Tisbury MA Impervious Cover Disconnection (ICD) Project

An Integrated Stormwater Management Approach for Promoting Urban Community Sustainability and Resilience

Task 3 Municipal Coordination Meeting

Prepared for:

U.S. EPA Region 1

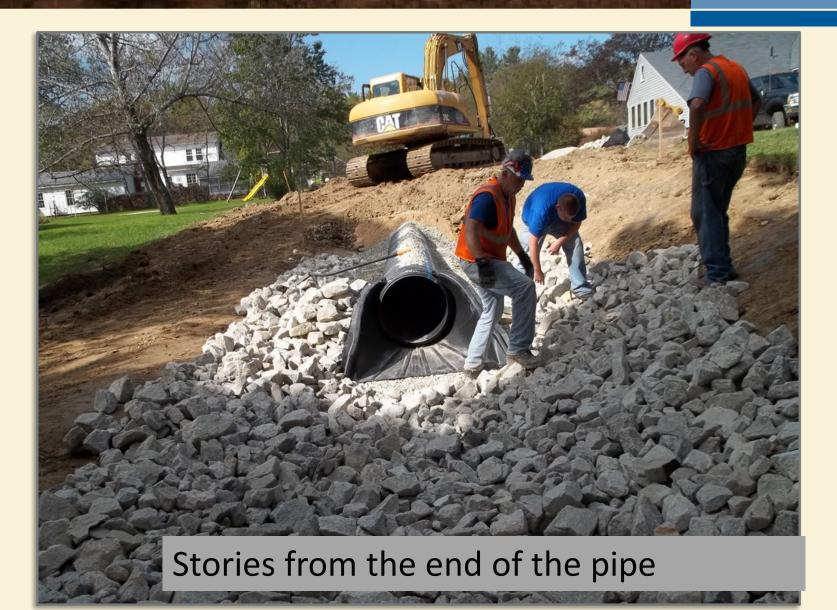
Tisbury, MA

Martha's Vineyard Commission

Prepared by:

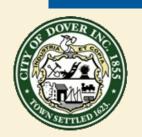
Paradigm Environmental

UNH Stormwater Center

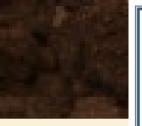

Great Lakes Environmental Center

A Technical Direct Assistance Project funded by the U.S. EPA Southern New England Program (SNEP)

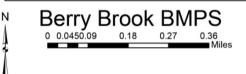
Challenges and Practical Solutions to Managing Municipal Stormwater Systems



Project Partners


- City of Dover, NH Staff
- UNH Stormwater Center
- NH Department of Environmental Services
- Environmental Protection Agency,
 Region 1

Berry Brook Watershed Management Plan –Implementation Projects Phase III


Final Report to
The New Hampshire Department of Environmental Services
Submitted by

The City of Dover and the UNH Stormwater Center December, 2017

Legend New BMPs

BB_Watershed

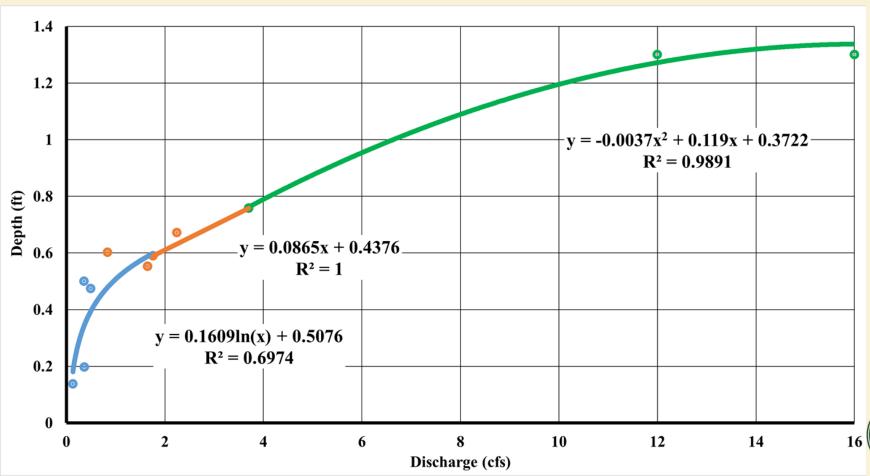
2015 1-foot Orthophotography

BMPs

Installations include:

- 12 bioretention systems,
- a tree filter,
- a subsurface gravel wetland,
- one acre of new wetland,
- daylighted and restored 1,100 linear feet of stream at the headwaters and restored 500 linear feet of stream at the confluence including two new geomorphicallydesigned stream crossings
- 3 grass-lined swales
- 2 subsurface gravel filters
- an infiltration trench system
- 3 innovative filtering catch basin designs

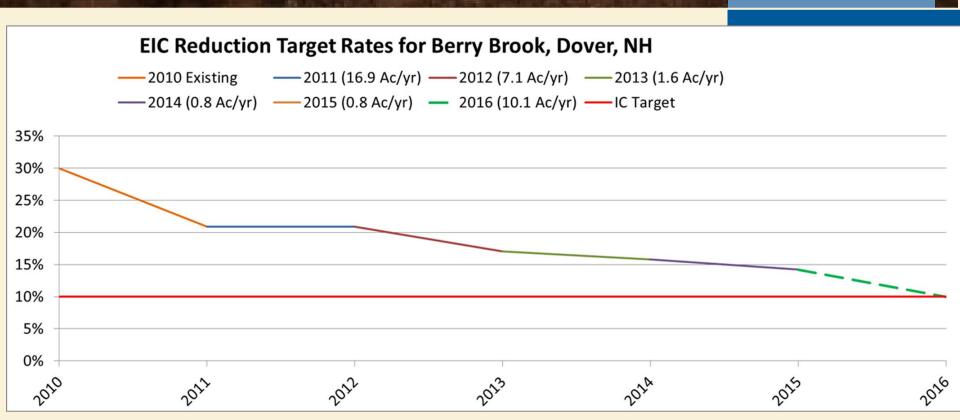
Funding and Results

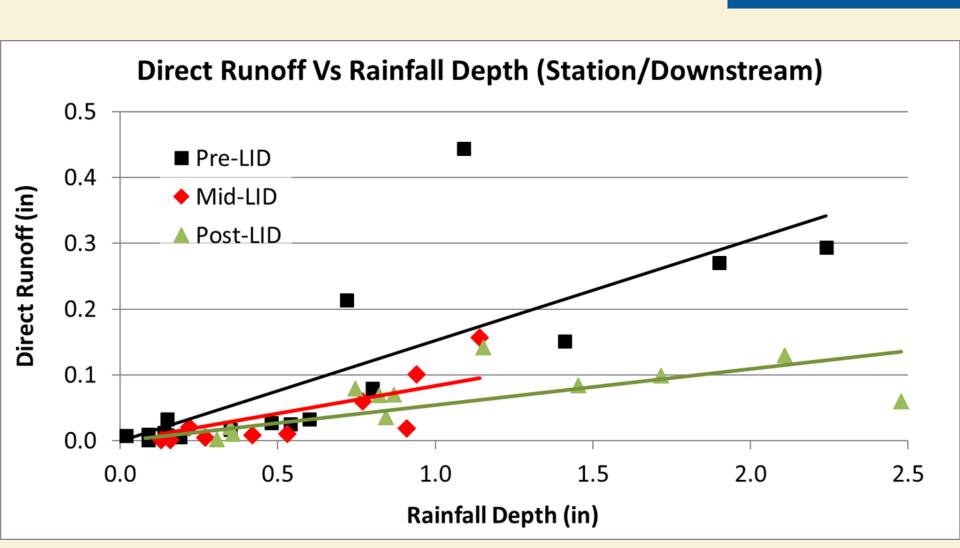


Funding: 3 watershed assistance grants (sec 319) and 1 aquatic resource mitigation grant, all with min 40% match from the city.

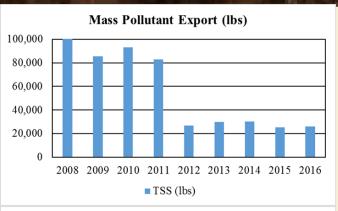
Berry Brook Project: Getting to 10%					
Cost	\$1,322,000				
Grant Funds	\$793,000				
Match (min estimate)	529,000				
BMPs	26				
DCIA Reduced	37 acres				
TSS Reductions (lb./yr.)	57,223				
TP Reductions (lb./yr.)	201				
TN Reductions (lb./yr.)	1,127				

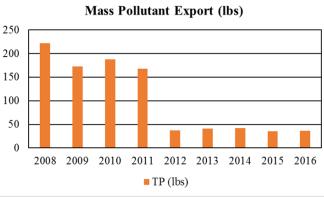
Hydrology

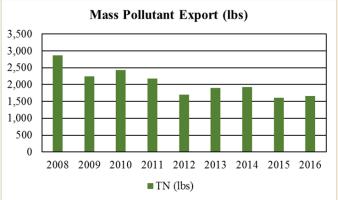




Berry Brook

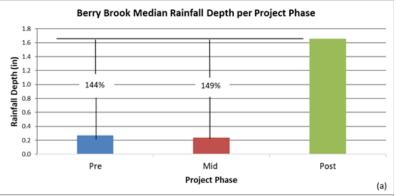

Hydrology

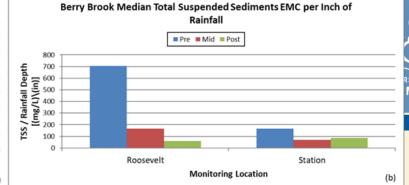




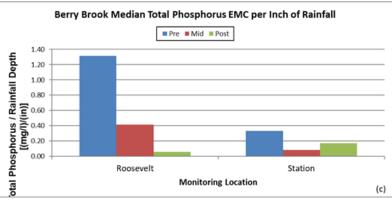
Modeled Water Quality

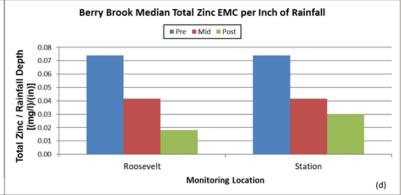
Results for Berry Brook at Station Drive 1-Inch Storm, $Ia = 0.05 S^1$

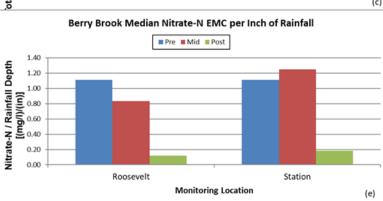

Year	% IC	P (in)	Q (in)	S (in)	CN	Q Reduction
2011	30	1.00	0.153	3.59	74	
2012	20	1.00	0.084	5.54	64	45.3%
2015	14	1.00	0.055	7.02	59	64.0%

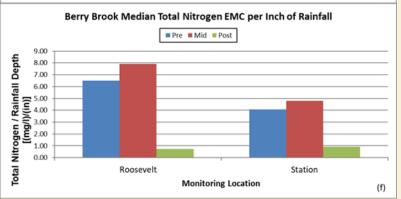

¹Hawkins, R.H.; Jiang, R.; Woodward, D.E.; Hjelmfelt, A.T.; Van Mullem, J.A. (2002). "Runoff Curve Number Method: Examination of the Initial Abstraction Ratio".

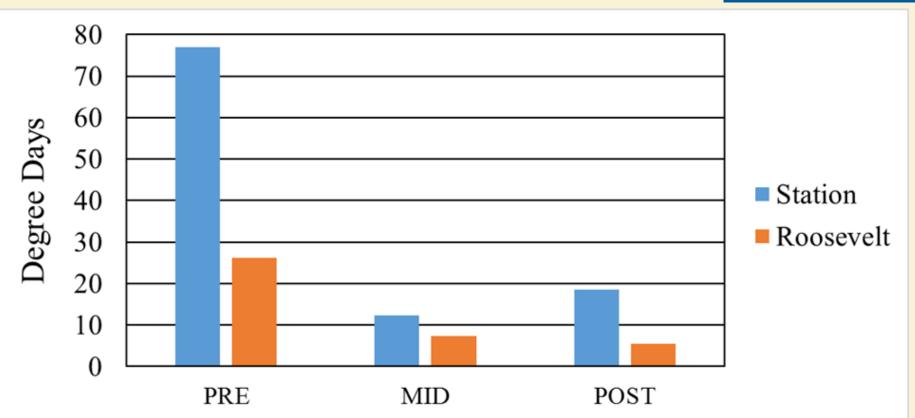
TNI	71	u


27


Year	А	Р	CN	TSS (lbs)	TP (lbs)	TN (lbs)
2008-20011	185	56.14	74	92,719	188	2,428
20012-2016	185	42.20	62	27,575	38	1,762
Annual Red	uctions (lb	./yr.)	65,144	149	667	
Simple Met	hod (lb./yr	.)	57,223	201	1,127	







		TSS (mg/l) / (in)		(in)	Zinc (mg/l) / (in) Nitrate -N (mg/l) / (in)		Total Nitrogen (mg/l) / (in)		Total Phosphorus (mg/l) / (in)		g/l) / (in)					
		Pre	Mid	Post	Pre	Mid	Post	Pre	Mid	Post	Pre	Mid	Post	Pre	Mid	Post
Roosevelt	Weighted EMC	704	167	60	0.07	0.04	0.02	1.1	8.0	0.1	6.5	7.9	0.7	1.31	0.42	0.06
Roosevert	% Difference		123%	168%		56%	121%		29%	161%		-20%	160%		104%	182%
Station	Weighted EMC	167	69	85	0.07	0.04	0.03	1.1	1.3	0.2	4.1	4.8	0.9	0.33	80.0	0.17
Station	% Difference		83%	65%		56%	84%		-12%	144%		-16%	127%		120%	65%
Ave ra ge	% Difference		103%	117%		56%	103%		8%	152%		-18%	144%		112%	124%

Temperature Data

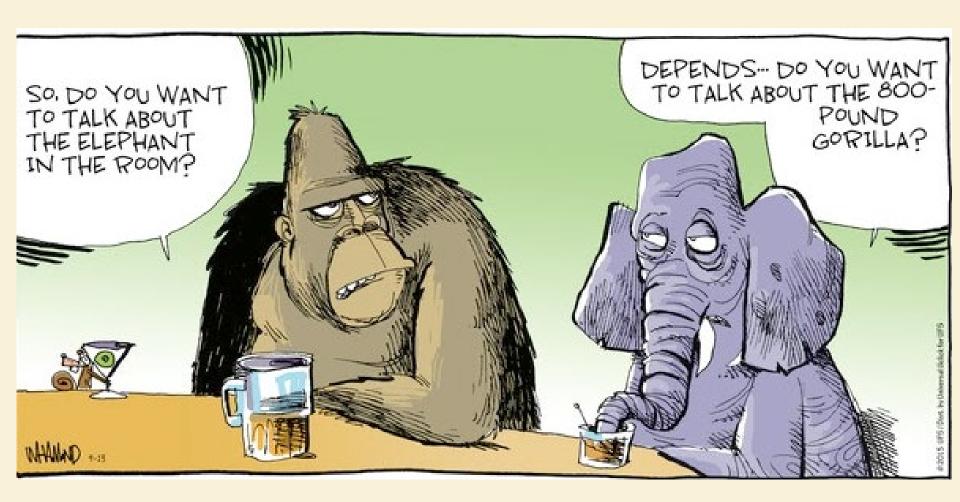
One degree day is a day when the average stream temperature is one degree Fahrenheit above 65 degrees F. This is important as the temperature that a Brook Trout begins to feel heat stress is 65 °F. Therefore a day with an average daily stream temperature of 71 degrees would represent 6 degree days.

Decadal Reflections: Cart Before the Horse

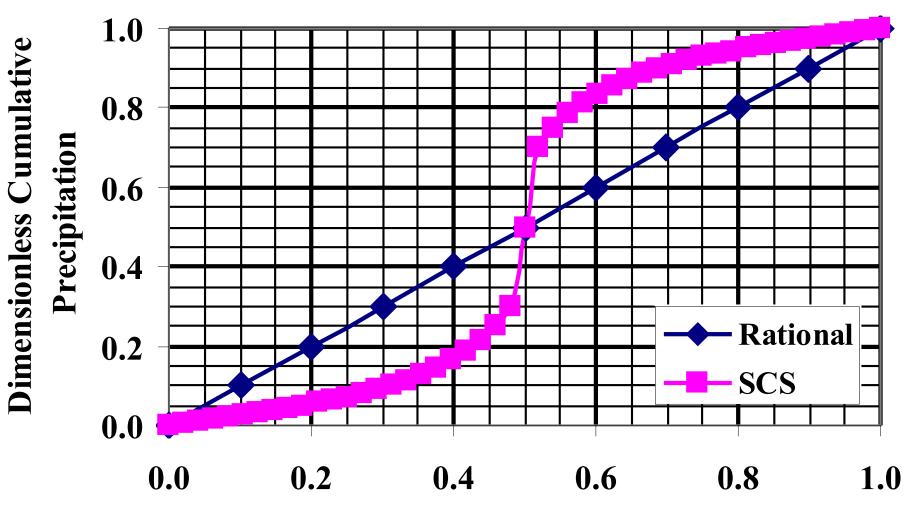
The expression cart before the horse is an idiom or proverb used to suggest something is done contrary to a conventional or culturally expected order or relationship.

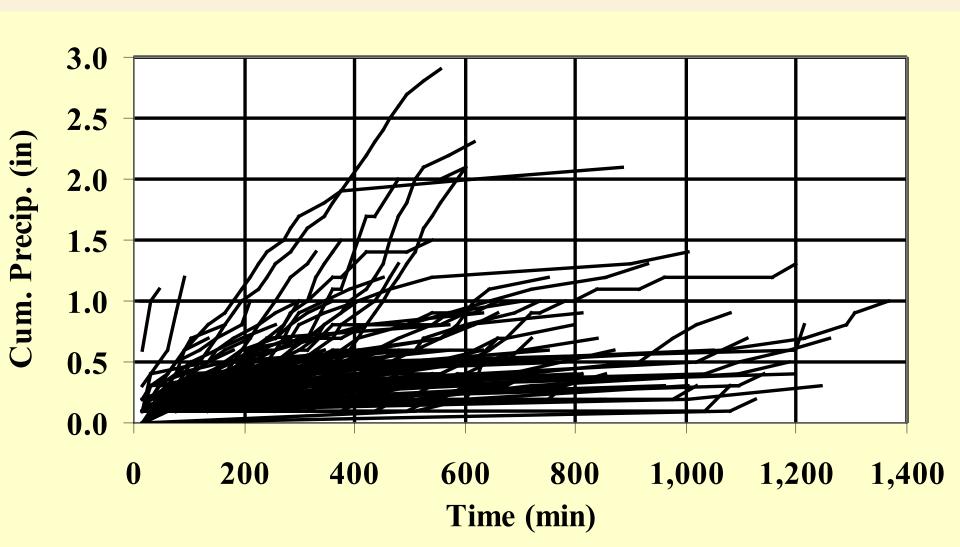
System Design

Stormwater Runoff Modeling is historically simple


- Q=CiA
- SCS Method

There is a need for expansion


Yes, climate change gives us pause to think, but IC is the 800-pound gorilla


Design Dimensionless Hyetographs

Dimensionless Time

Sampling of Observed Hyetographs Durham, NH NOAA Gage

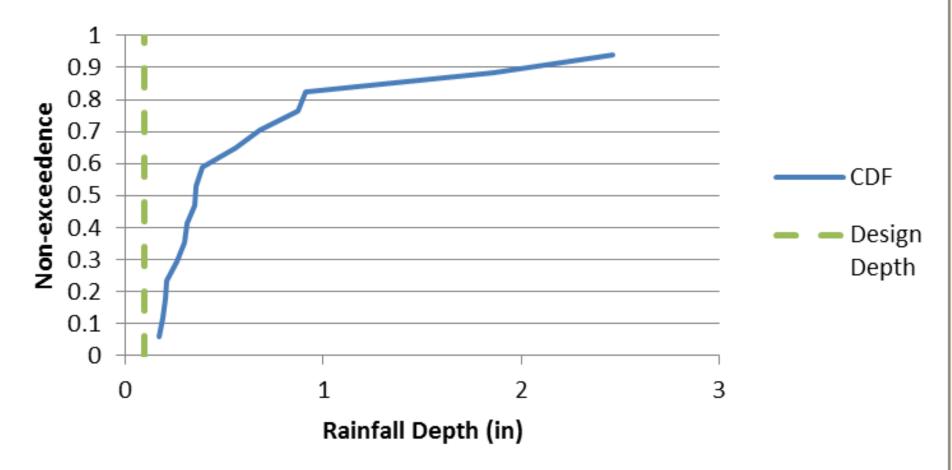
Sizing for Performance

Sizing Details

System	WQV ft ³ (m ³)	Actual WQV ft ³ (m ³)	% of normal design	Rain Event in (mm)	Sizing Method
SGWSC	7,577 (214.6)	720 (20.4)	10%	0.10 (2.5)	Static
IBSCS	1,336 (37.8)	310 (8.8)	23%	0. 23 (5.8)	Dynamic

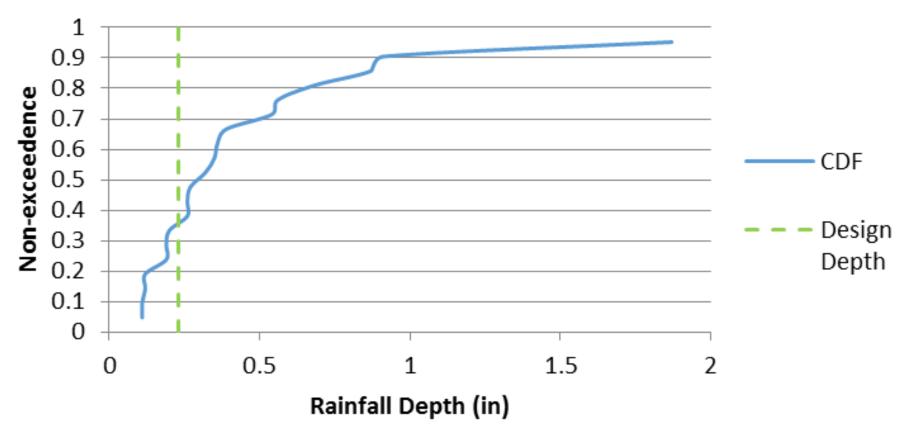
$$WQV = \left(\frac{P}{12}\right)x IA$$

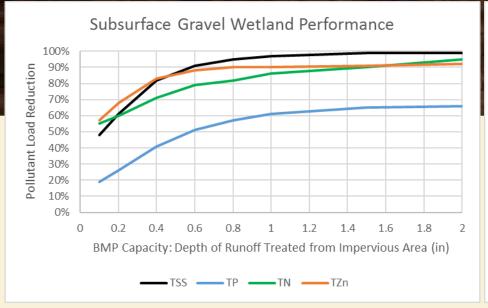
Dynamic Bioretention Sizing

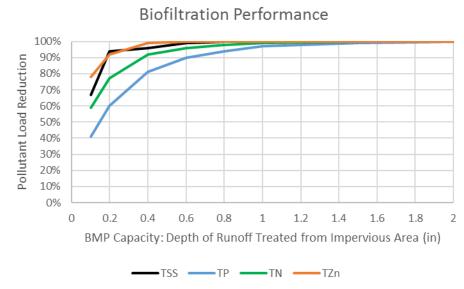

$$Af = Vwq * \frac{df}{(i(hf + df)tf)}$$

Static SGW System Sizing

$$Q = CdA\sqrt{2gh}$$




Oyster River Road Cumulative Distribution Frequency



Design Storage Volume (DSV) - runoff depth from IA (in)

Analyte	Depth txt	Modeled RE	Measured RE
TSS	0.1	48	75
TZn	0.1	57	75
TN	0.1	55	23
TP	0.1	19	53

Analyte	Depth txt	Modeled RE	Measured RE
TSS	0.23	70	81
TZn	0.23	88	86
TN	0.23	60	27
TP	0.23	35	45

Region 1 GI Cost Estimates

BMP (From Opti-Tool)	Cost (\$/ft³) 1	Cost (\$/ft³) – 2016 dollars ⁶
Bioretention (Includes rain garden)	13.37 ^{2,4}	15.46
Dry Pond or detention basin	5.88 ^{2,4}	6.80
Enhanced Bioretention (aka-Bio-filtration Practice)	13.5 ^{2,3}	15.61
Infiltration Basin (or other Surface Infiltration Practice)	5.4 ^{2,3}	6.24
Infiltration Trench	10.8 ^{2,3}	12.49
Porous Pavement - Porous Asphalt Pavement	4.60 ^{2,4}	5.32
Porous Pavement - Pervious Concrete	15.63 ^{2,4}	18.07
Sand Filter	15.51 ^{2,4}	17.94
Gravel Wetland System (aka-subsurface gravel wetland)	7.59 ^{2,4}	8.78
Wet Pond or wet detention basin	5.88 ^{2,4}	6.80
Subsurface Infiltration/Detention System (aka- Infiltration Chamber)	54.54 ⁵	67.85

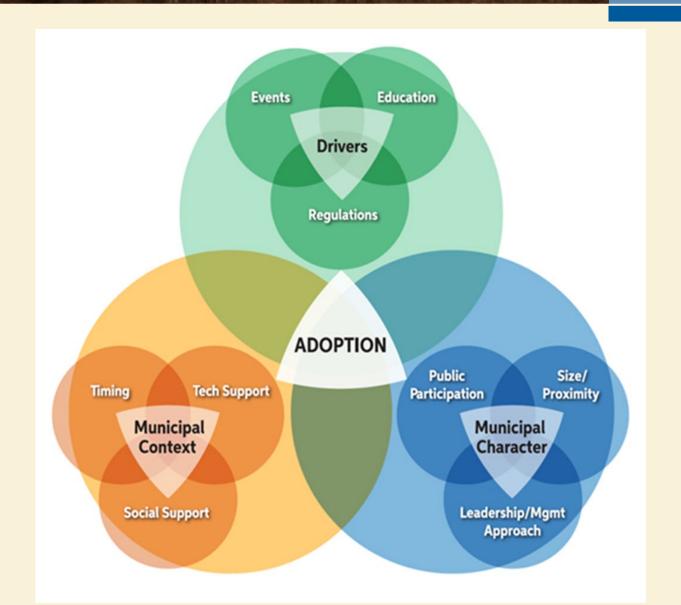
¹ Footnote: Includes 35% add on for design engineering and contingencies

https://www.unh.edu/unhsc/ms4-resources

GI Implementation Cost Comparisons

Costs per disconnected acre of IC							
PA NY NH							
Actual	\$250,000.00	\$320,000.00	\$30,000.00				

Stormwater Management Design - 70.5 acre Ultra-Urban Drainage Area Sizing Comparison of Capital Costs and Relative Phosphorus Load Removal Efficiency


Best Management Practice Size	Depth of Runoff Treated from Impervious Area (in)	*Storage Volume Cost	**Total Phosphorus Removal Efficiency (%)
Subsurface Gravel Filter - Minimum Size	0.35	\$1,016,912	62%
Subsurface Gravel Filter - Moderate Size	0.5	\$1,452,732	80%
Subsurface Gravel Filter - Full Size	1.0	\$2,905,463	96%

^{*}Storage Volume Cost estimates provided by EPA-Region 1 for Opti-Tool methodology, 2015-Draft

^{**}Total Phosphorus %RE based on Appendix F Massachusetts MS4 Permit

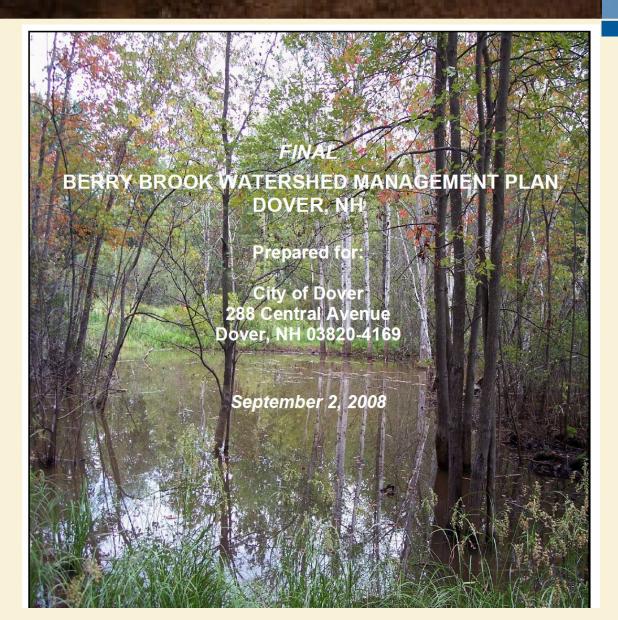
Project Approach

Typical Project Approach

Develop a watershed management plan (a-i)

Optimize placement of BMPs for maximum gain

Implement


Model

Outreach and education on project results

Report

Typical Project Approach

Optimize Again...

2011 Watershed Restoration Grants for Impaired Waters

Section B: PRE-PROPOSAL APPLICATION FORM

Watershed Restoration Grants for Impaired Waters

I. Proposal Title

Berry Brook Watershed Restoration through Low Impact Development Retrofits in an Urban Environment

II. Contact Information

Primary contact person: Dean Peschel

Organization: Environmental Project Manager, City of Dover DPW

Street address: 288 Central Avenue City, State, ZIP: Dover, NH, 03820-4169

Day phone: (603) 516-6094 Fax: () Email: dean.peschel@ci.dover.nh.us

Secondary contact person: Robert M. Roseen, Ph.D., D.WRE, P.E. Organization: Director, The UNH Stormwater Center

Street address: 35 Colovos Road City, State, ZIP: Durham, NH, 03824

Day phone: (603)862-4024 Fax: (603)862-3957 Email: robert.roseen@unh.edu

Signature of Applicant:

Date of signature: 9/2/10

III. Project Summary

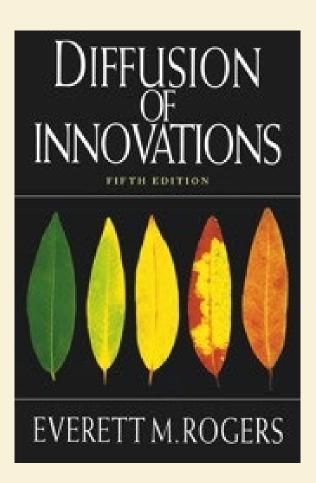
Berry Brook is a highly urbanized 1st order stream located in Dover, NH, that is classified as Class B waters. The Brook is located in a built-out, 164-acre watershed with 25% impervious cover (IC) and includes medium-density housing with commercial and industrial uses. The stream has been placed on the NHDES 2006 Section 303(d) list and is impaired for primary recreation and for aquatic life. The source of this impairment includes urbanization resulting in an increase of pollutant mass and runoff volumes from stormwater.

And then you implement – Inside a historic 40,000 sf slow sand filter

National Historic Preservation Act Section 106 Compliance for the Regulatory Program

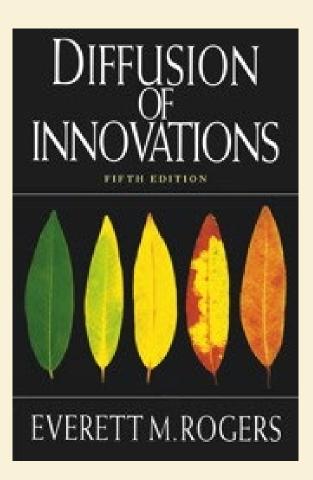
And more implementation...

Every Day Counts

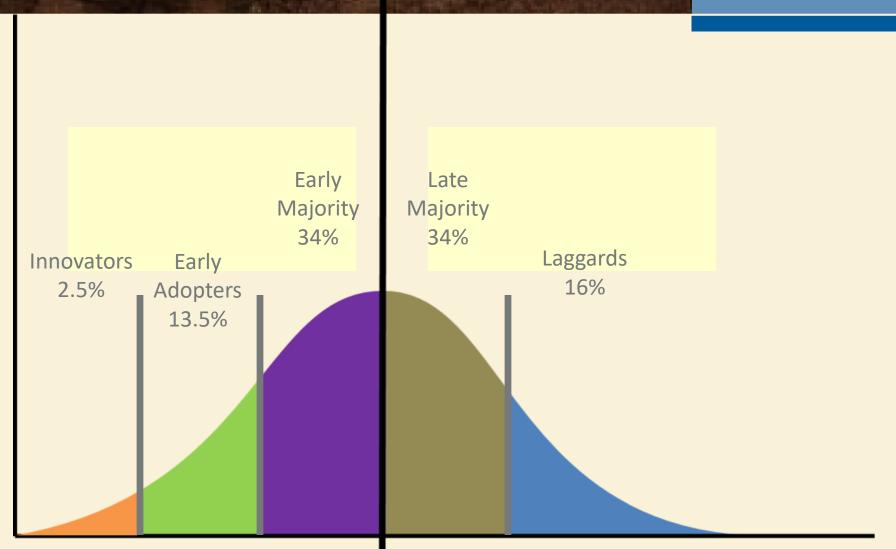

There is a second approach that implements noregrets stormwater improvements opportunistically as infrastructure is routinely upgraded.

This is a behavioral change toward developing longterm comprehensive and affordable SW management strategies for achieving water resource goals.

Diffusion of Innovation

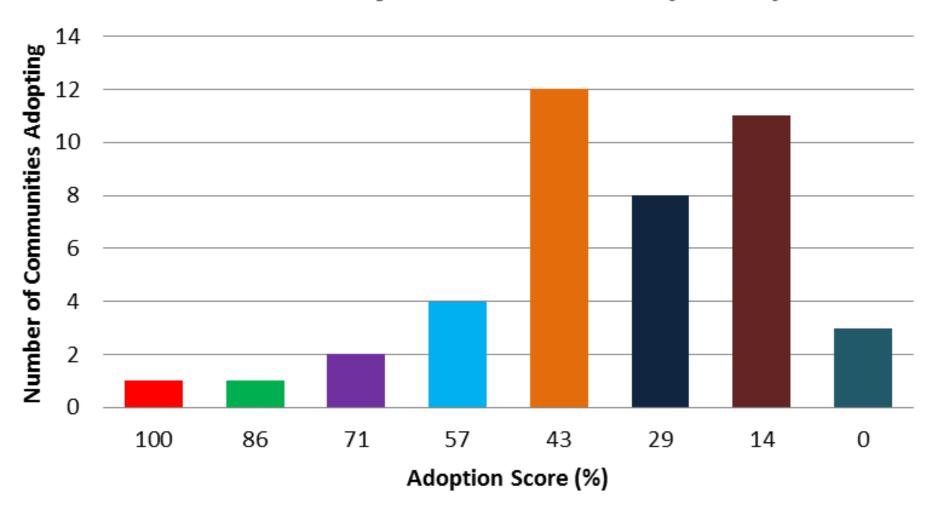

Diffusion of innovation is the process by which an innovation is communicated through certain channels over time among the members of a social system (Rogers, 2003)

Innovation

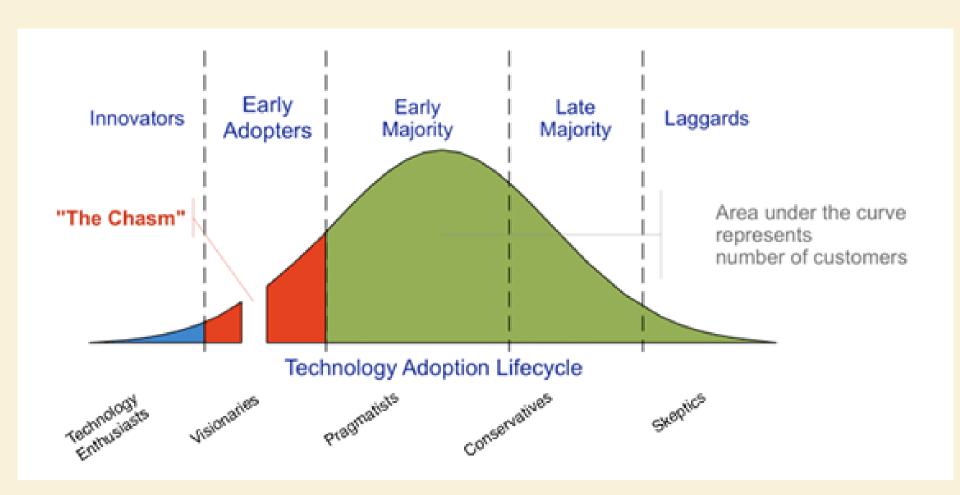


An idea, practice, or object that is perceived as new by an individual or other unit of adoption (Rogers, 2003).

DOI Adopter Categories

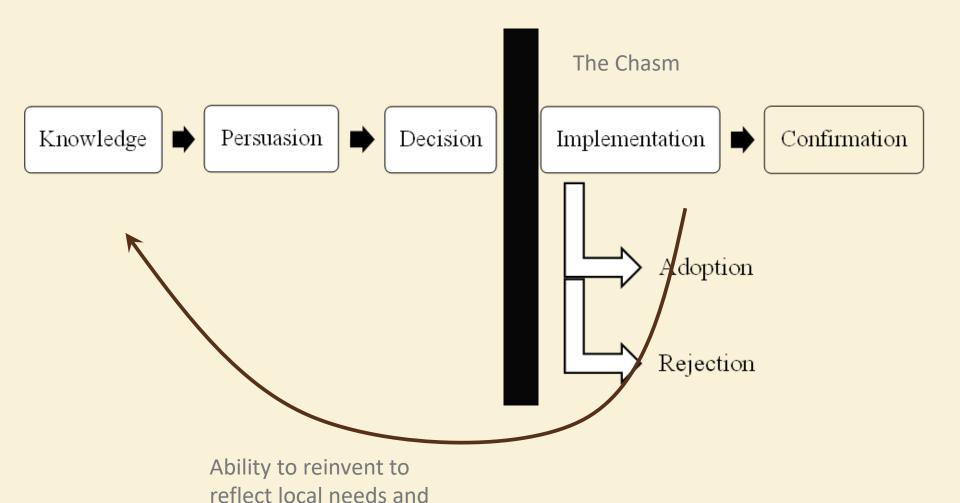

Early Majorities Late Majorities

Adapted from Rogers, 2003



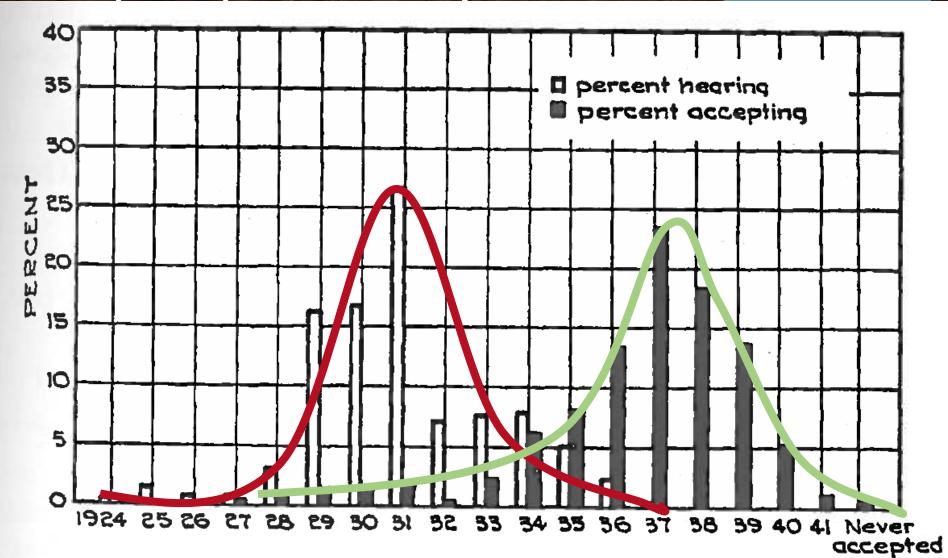
NH Great Bay Communities (n=42)

Pragmatic Herd

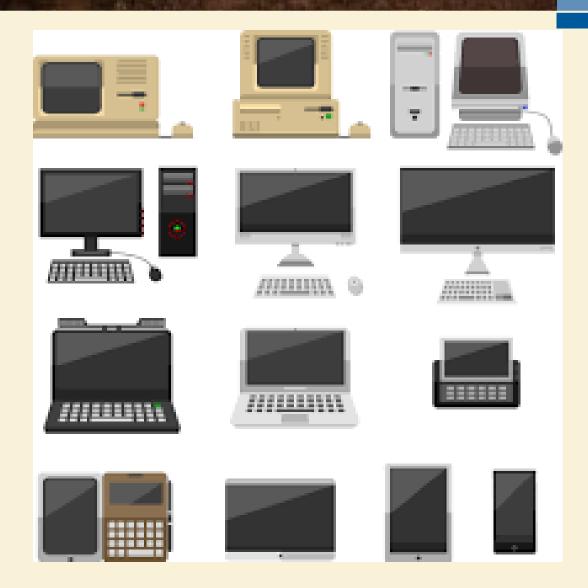


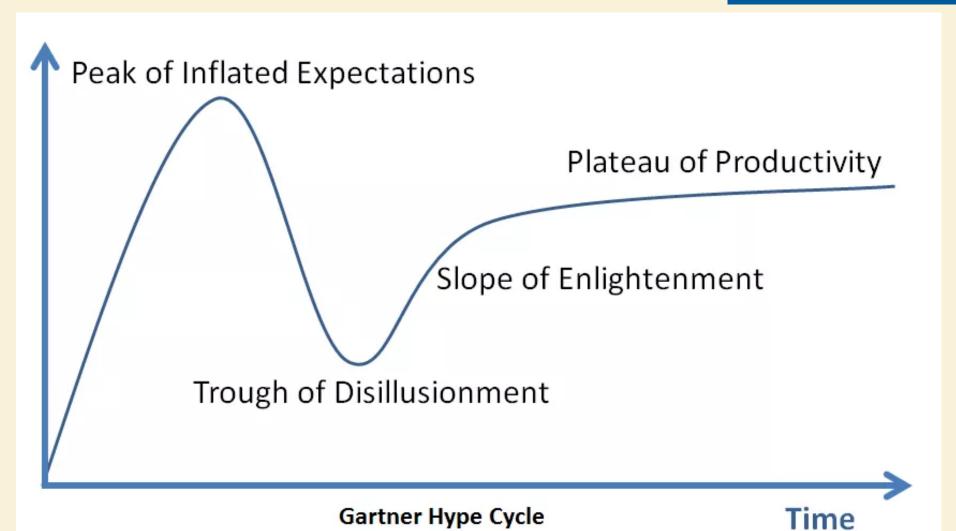
Innovation Decision Process

foster ownership



Rogers, 2003


Results from Ryan and Gross on farmer adoption patterns of hybrid corn.

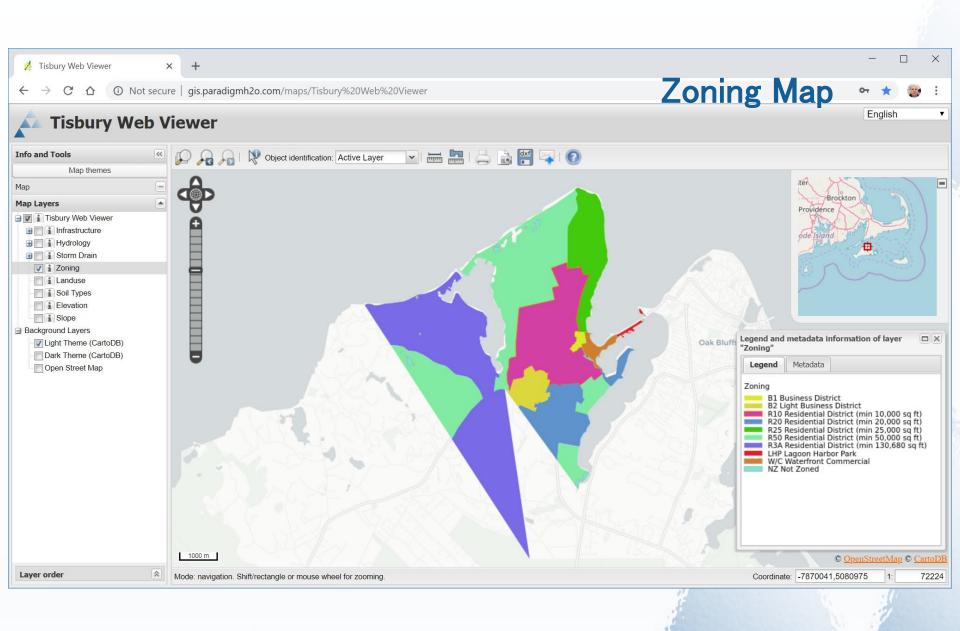


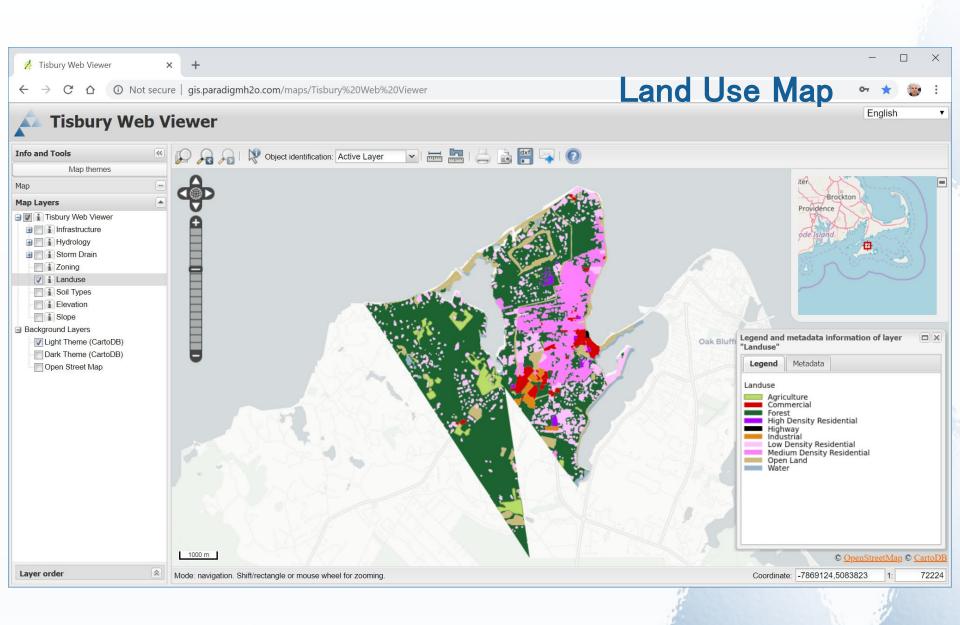
Are we at the finish line or the starting line?

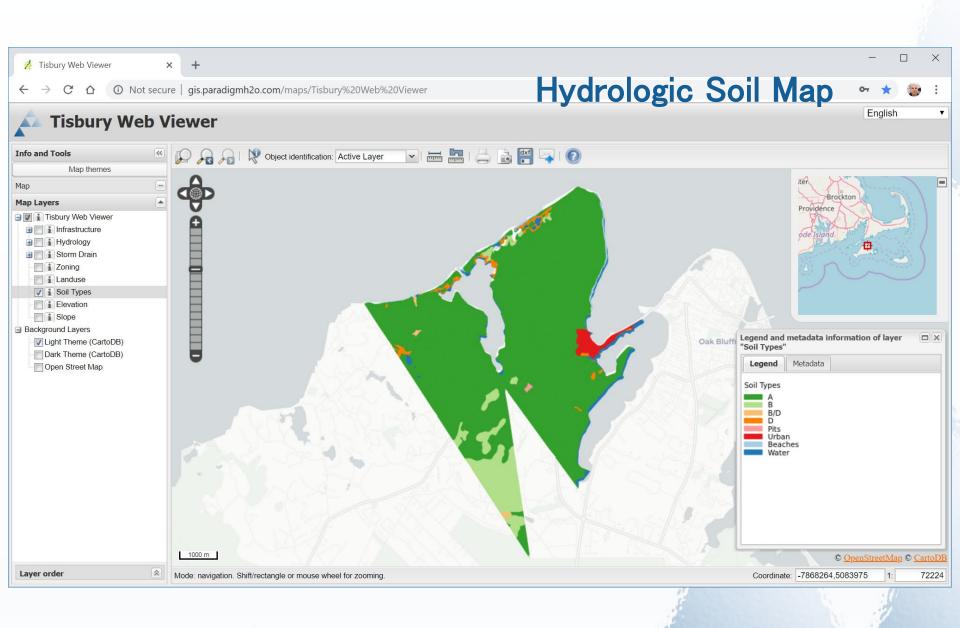
Project Milestone & Timeline

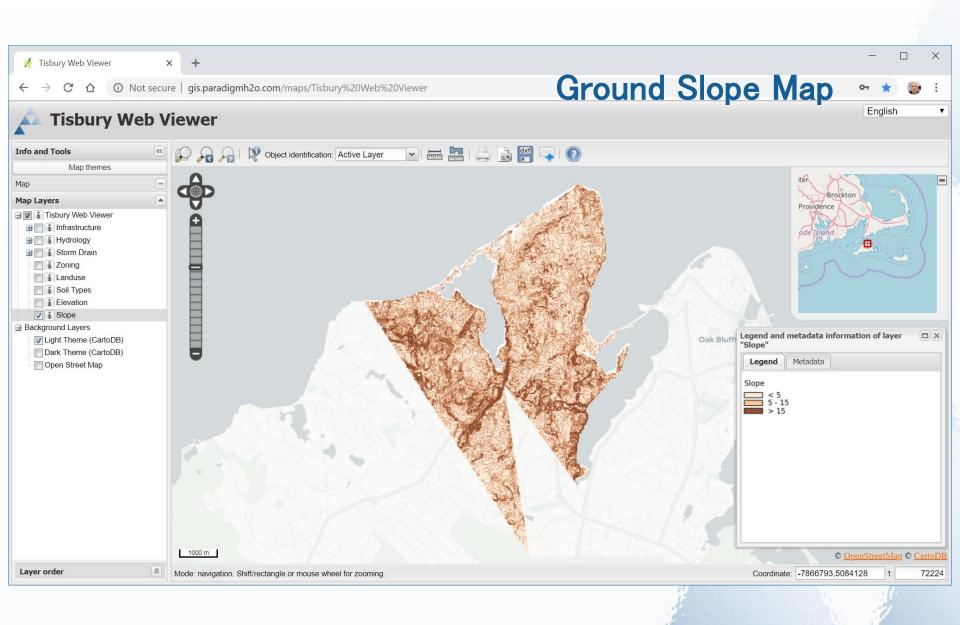
Project Task	Delivery Date	Status
Task 0: Work Plan	Oct 12, 2018	Complete
Task 1: Quality Assurance Project Plan (QAPP)	Oct 12, 2018	Complete
Task 2: Kickoff Meeting at Boston MA	Oct 24, 2018	Complete
Task 3: Municipal Coordination Meeting at Tisbury MA	Nov 29, 2018	Current
Task 4A : GIS Analysis: Watershed Characterization and GI SCM Opportunity Area Screening	Dec 15, 2018	In Progress
Task 4B : Opti-Tool Analyses for Quantifying Stormwater Runoff Volume, High-Flow Rates and Pollutant Loadings from Watershed Source Areas	Dec 31, 2018	In Progress
Task 4C : Develop High Runoff Flow Rate Metric(s) to Evaluate Source Area Contributions and GI SCM Reduction Benefits	Feb 1, 2019*	-
Task 4D : Develop Planning Level GI SCM Performance Curves for Estimating Cumulative Reductions in SW-Related Indicator Bacteria	Feb 15, 2019	-
Task 4E : Identify Green Infrastructure Stormwater Control Opportunities and Potential Management Strategies for Tisbury (Meeting at Tisbury MA)	Mar 7, 2019	-

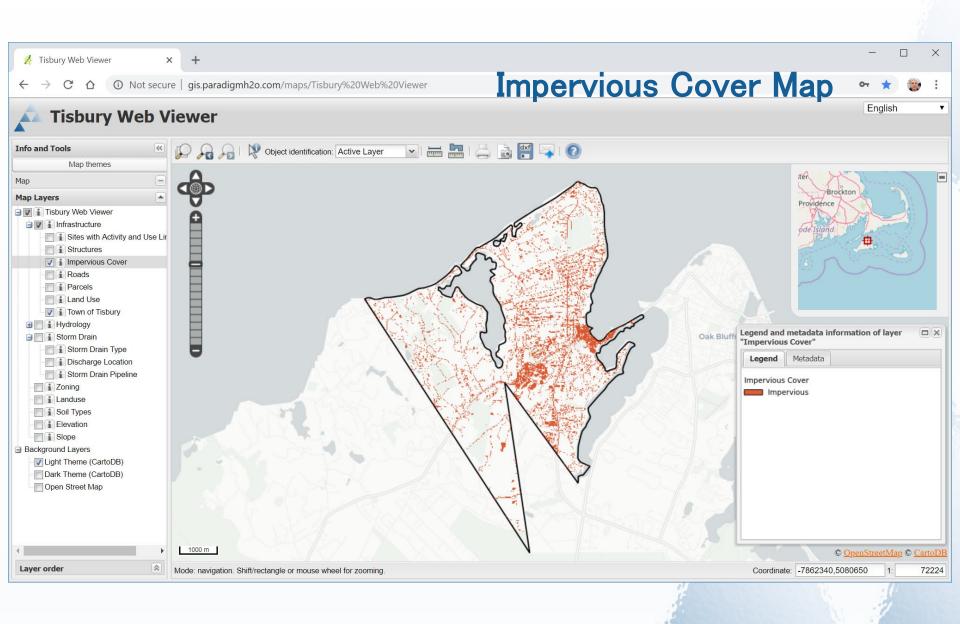
Project Milestone & Timeline


Project Task	Delivery Date	Status
Task 4F : Conduct Field Investigations to Further Evaluate Community GI SCM Opportunities and Strategies	June 15, 2019	-
Task 4G: Develop GI SCM Conceptual Designs	July 15, 2019	-
Task 4H : Quantify Benefits for Municipal Long-Term GI SCMs Implementation Strategies	Aug 15, 2019	-
Task 4I : Develop Streamlined Technical Support Document to Quantify Benefits of GI SCMs for IC Disconnection	Aug 15, 2019	-
Task 4J: Final Project Meeting at Tisbury MA and Final Project Report	Aug 30, 2019 Sep 15, 2019	-
Task 5 : Develop Streamlined Technical Support Document for Developing Long-Term Community SCM IC Disconnection Strategies	Sep 15, 2019	-
Task 2: Conduct a webinar	Sep 15, 2019	-


GIS Data Inventory


- MassGIS


 (Massachusetts
 Bureau of
 Geographic
 information Systems)
- Martha Vineyard
 Commission
- gSSURGO (Soil Survey Staff.
 Gridded Soil Survey Geographic)


GIS Layer	Description	Raw File Name
Digital Elevation Model	2005 – 5 x 5 meters	Elevation_hillshade_5k.zip
LiDAR Terrain	2014 – 1 x 1 meter	MV_Lidar.zip
Building Structures	2017 – polygon layer	Structures_poly.zip
Impervious Surface	2005 – 1 x 1 meter	lmp_mvin.zip
Land Use	2017 – polygon layer	Landuse2005_poly.zip
USGS Drainage Sub-basins	2008 – polygon layer	Subbas.zip
NRCS HUC12 Subwatersheds	2017 – polygon layer	Nrcshuc.zip
MassDEP Hydrogeography	2017 – polygon layer	Hydro100k.zip
MassDEP Wetlands	2017 – polygon layer	Wetlands.zip
MassDEP CWA Regulated Receiving Waters and Attainment Classes	2014 – polygon layer	Wbs2014_shp.zip
FEMA National Flood Hazard Layer (50 + 100 Year Flood Zones)	2017 – polygon layer	Nfhl.zip
NRCS SSURGO-Certified Soils	2012 – polygon layer	Soi_dukes.zip
Standardized Assessors' Parcels	2018 – polygon layer	L3_SHP_M296_TISBURY.zip
Department of Transportation (MassDOT) Roads	2014 – line layer	MassDOT_Roads_SHP.zip
MassDEP Oil and/or Hazardous Material Sites with AUL	2018 – point layer	Aul_pt.zip
Aquifers	2007 – polygon layer	Aquifers.zip
Surficial Geology	2014 – polygon layer	Surfgeo250k.zip
Tisbury City Boundary	2014 – polygon layer	Towns.zip
Tisbury Zoning	2004 – polygon layer	tis_wastewater_request.mpk
Storm Drain System	2003 – polygon layer	tis_wastewater_request.mpk
Major and Coastal H2osheds	2009 – polygon layer	tis_wastewater_request.mpk

Hydrologic Response Units (HRUs)

- Intersect land use, land cover, soil, and slope
- Tabulate area distribution

Land Use	Total Area	Soil					Slope		Cover		
Land Ose	(acre)	Α	В	С	D	NoData	Low	Med	High	Impervious	Pervious
Forest	2,393.19	50.8%	6.0%	0.0%	0.4%	0.0%	17.5%	28.4%	1 1.4%	3.1%	54.1%
Agriculture	147.03	2.7%	0.7%	0.0%	0.0%	0.0%	1.5%	1.6%	0.4%	0.2%	3.3%
Commercial	112.83	1.9%	0.0%	0.8%	0.0%	0.0%	1.5%	0.9%	0.3%	1.8%	0.9%
Industrial	41.68	1.0%	0.0%	0.0%	0.0%	0.0%	0.4%	0.3%	0.2%	0.5%	0.5%
Low Density Residential	551.76	12.8%	0.4%	0.0%	0.0%	0.0%	4.5%	6.3%	2.4%	3.3%	9.9%
Medium Density Residential	478.14	11.4%	0.0%	0.0%	0.0%	0.0%	4.6%	5.3%	1.5%	3.3%	8.1%
High Density Residential	27.50	0.6%	0.0%	0.0%	0.0%	0.0%	0.2%	0.3%	0.1%	0.3%	0.4%
Highway	2.74	0.0%	0.0%	0.1%	0.0%	0.0%	0.1%	0.0%	0.0%	0.1%	0.0%
Open Land	334.78	5.1%	0.6%	0.5%	1.8%	0.0%	3.7%	3.2%	1.1%	1.1%	6.9%
Water	84.43	0.2%	0.0%	0.0%	1.8%	0.0%	1.7%	0.1%	0.2%	0.0%	2.0%
No Data	13.20	0.0%	0.0%	0.0%	0.3%	0.1%	0.2%	0.0%	0.0%	0.0%	0.3%
Total	4,187.28	86.4%	7.8%	1.4%	4.3%	0.1%	35.9%	46.5%	17.7%	13.6%	86.4%

Hydrologic Response Units (HRUs) - Impervious

luan amiliana Land Haa	Total Area			Soil Group				Slope	
Impervious Land Use	(acre)	Α	В	С	D	NoData	Low	Med	High
Forest	129.51	21.3%	1.4%	0.0%	0.1%	0.0%	9.4%	10.0%	3.3%
Agriculture	8.55	0.9%	0.6%	0.0%	0.0%	0.0%	0.8%	0.5%	0.1%
Commercial	75.02	8.7%	0.0%	4.4%	0.0%	0.0%	8.6%	3.6%	1.0%
Industrial	20.05	3.5%	0.0%	0.0%	0.0%	0.0%	2.0%	1.1%	0.4%
Low Density Residential	138.06	23.6%	0.6%	0.0%	0.0%	0.0%	11.1%	9.8%	3.3%
Medium Density Residential	137.38	24.0%	0.0%	0.1%	0.0%	0.0%	12.1%	9.8%	2.2%
High Density Residential	12.53	2.1%	0.0%	0.1%	0.0%	0.0%	1.0%	0.9%	0.3%
Highway	2.43	0.0%	0.0%	0.4%	0.0%	0.0%	0.4%	0.1%	0.0%
Open Land	45.31	5.8%	0.5%	1.6%	0.1%	0.0%	4.5%	2.9%	0.6%
Water	0.61	0.0%	0.0%	0.0%	0.1%	0.0%	0.1%	0.0%	0.0%
No Data	0.58	0.0%	0.0%	0.0%	0.0%	0.1%	0.0%	0.0%	0.0%
Total	570.04	89.8%	3.1%	6.8%	0.3%	0.1%	50.1%	38.8%	11.1%

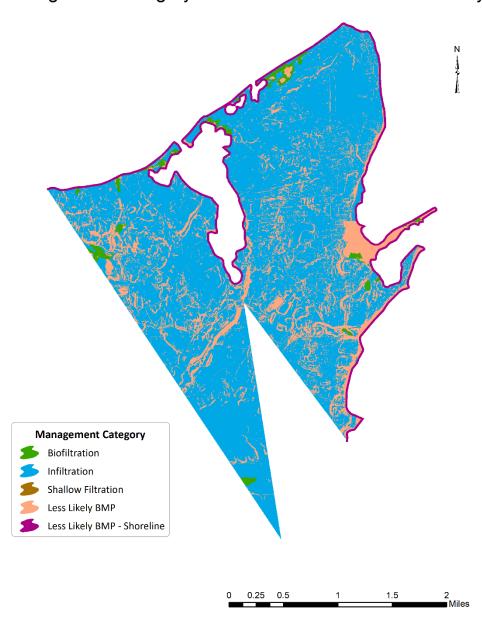
Hydrologic Response Units (HRUs) - Pervious

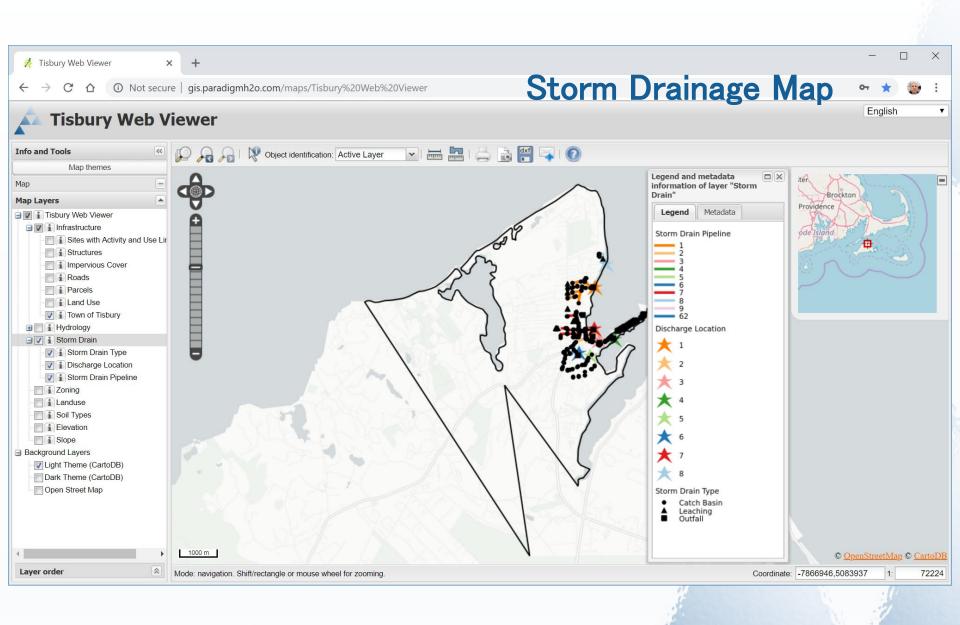
Pervious Land Use	Total Area			Soil Group	Slope				
Pervious Land Ose	(acre)	Α	В	С	D	NoData	Low	Med	High
Forest	2,263.68	55.4%	6.7%	0.0%	0.4%	0.0%	18.7%	31.3%	12.7%
Agriculture	138.47	3.0%	0.8%	0.0%	0.0%	0.0%	1.6%	1.8%	0.4%
Commercial	37.80	0.8%	0.0%	0.2%	0.0%	0.0%	0.4%	0.4%	0.2%
Industrial	21.64	0.6%	0.0%	0.0%	0.0%	0.0%	0.2%	0.2%	0.2%
Low Density Residential	413.70	11.0%	0.4%	0.0%	0.0%	0.0%	3.5%	5.7%	2.2%
Medium Density Residential	340.77	9.4%	0.0%	0.0%	0.0%	0.0%	3.4%	4.6%	1.4%
High Density Residential	14.97	0.4%	0.0%	0.0%	0.0%	0.0%	0.1%	0.2%	0.1%
Highway	0.31	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Open Land	289.47	5.0%	0.6%	0.3%	2.1%	0.0%	3.6%	3.3%	1.2%
Water	83.82	0.2%	0.0%	0.0%	2.1%	0.0%	1.9%	0.2%	0.2%
No Data	12.61	0.0%	0.0%	0.0%	0.3%	0.1%	0.2%	0.0%	0.0%
Total	3,617.24	85.9%	8.5%	0.6%	4.9%	0.1%	33.6%	47.7%	18.7%

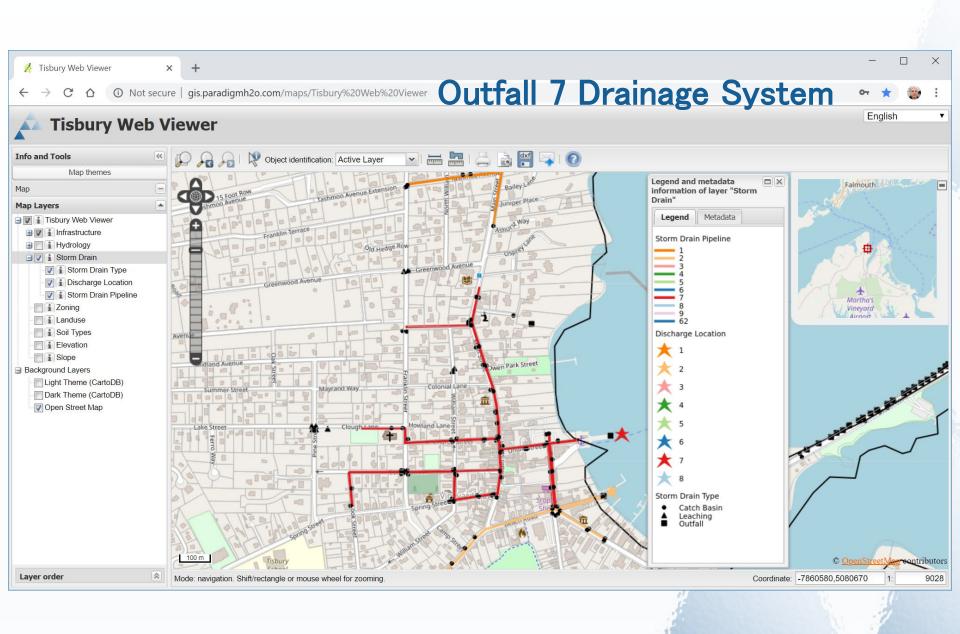
Hydrologic Response Units (HRUs) - Slope by Dev. Pervious

Land Cover	Total Area		Slope	
Land Cover	(acre)	Low	Med	High
Pervious A	986.28	2 9.3%	42.1%	16.1%
Pervious B	36.70	1.7%	1.3%	0.2%
Pervious C	19.58	1.1%	0.5%	0.1%
Pervious D	84.53	4.4%	2.2%	0.8%
NoData	0.00			1
Impervious	568.76			
Pervious Forest	2,263.68		10% and 5	14(1) 12 (1) 5 Y
Pervious Agriculture	138.47			À
Water	84.43	1		
Total	4,182.42	36.5%	46.2%	17.3%

Hydrologic Response Units (HRUs)


- Unique combinations of land use, land cover, soil, and slope
- Basic building blocks of the watershed model
- Boundary condition to the Opti-Tool


HRU	Land Use	Land Cover	Hydrologic Soil Group	Slope
1	Agriculture	Pervious	Α	Low
2	Agriculture	Pervious	Α	Med
3	Agriculture	Pervious	В	Low
4	Agriculture	Pervious	В	Med
5	Agriculture	Impervious	n/a	n/a
6	Forest	Pervious	A	Low
7	Forest	Pervious	Α	Med
8	Forest	Pervious	A	High
9	Forest	Pervious	В	Low
10	Forest	Pervious	В	Med
11	Forest	Pervious	В	High
12	Forest	Impervious	n/a	n/a
13	Developed	Pervious	Α	Low
14	Developed	Pervious	A	Med
15	Developed	Pervious	Α	High
16	Developed	Pervious	В	Low
17	Developed	Pervious	В	Med
18	Developed	Pervious	С	Low
19	Developed	Pervious	C	Med
20	Developed	Pervious	D	Low
21	Developed	Pervious	D	Med
22	Open Space	Impervious	n/a	n/a
23	Commercial/Industrial	Impervious	n/a	n/a
24	Low Density Residential	Impervious	n/a	∥ n/a
25	Medium Density Residential	Impervious	n/a	n/a
26	High Density Residential	Impervious	n/a	n/a
27	Highway/Roads	Impervious	n/a	n/a


GI SCM Siting Criteria

Land Use	Landscape Slope (%)	Within 100 feet of Coastline?	Soil Group	Management Category	BMP Type(s) in Opti-Tool
		Yes	All	Less likely for onsite BMP	
			A/B/C	Infiltration	Surface Infiltration Basin (e.g., Rain Garden)
Pervious		No			Biofiltration (e.g.,
Area			D	Biofiltration	Enhanced Bioretention with ISR and underdrain option)
	> 15			Less likely for onsite BMP	(With the Section
		Yes	All	Less likely for onsite BMP	
Impervious Area	<= 5	NI	A/B/C	Infiltration	Infiltration Trench
		No	D	Shallow filtration	Porous Pavement
	> 5			Less likely for onsite BMP	

Management Category Based on Site Condition Suitability

Pilot Study Area

- Outfall 7 as Assessment Point
- Establish Baseline Condition
 - Pipe network
 - Drainage to each catch basin (parcel boundaries)
 - Routing network
- Run GI SCM Scenarios
- Evaluate the effectiveness of GI SCM (annual based)
 - Flow volume
 - TN load

Discussion of issues/Drainage Master Plan

Nov 29, 2018

Field Investigation Concept Designs

"Bioretention Design"

bioretention design

ΑII

Images

Videos

lews

More

Settings

Tools

381,000 results!

About 381,000 results (0.33 seconds)

Images for bioretention design

Shopping

More images for bioretention design

Report images

[PDF] Bioretention Design Specifications and Criteria

www.leesburgva.gov/home/showdocument?id=5057 •

Bioretention is flexible in **design**, affording many opportunities for the designer to be creative. This **design** guide first goes into a step by step process of how to size and **design bioretention** to accommodate the **design** storm runoff amount. After that, how to integrate the **bioretention** facility(ies) into the overall site **design** is ...

[PDF] Bioretention Manual - CT.gov

www.ct.gov/deep/lib/deep/p2/raingardens/bioretention_manual_2009_version.pdf ▼
Mar 6, 2013 - This manual has been prepared to replace and update the 1993 edition of the **Design**.

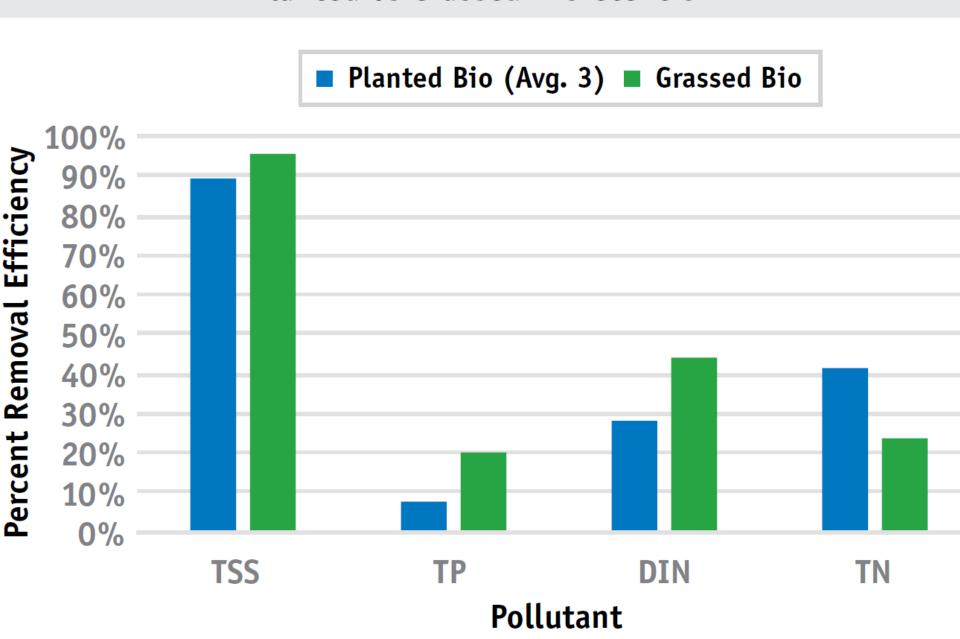
Manual for Use of **Bioretention** in Stormwater Management. This manual builds on that work and further identifies methodologies, practices, and examples of **bioretention**. Changes that were made focus primarily on four ...

[PDF] Designing Bioretention Areas

https://www.unce.unr.edu/programs/sites/nemo/files/.../DesigningBioretentionAreas.pd... ▼
"Bi. i i h i hi h. "Bioretention is the process in which contaminants and sedimentation are removed f ff S i from stormwater runoff. Stormwater is collected into the treatment area which, i t f b ff t i, d b d consists of a grass buffer strip, sand had ponding area organic layer or mulch layer. I ti il d l t " planting soil and

Maintenance Must be Included in the Design Process

Not by the designers, but by the people who are expected to do it and pay for it



Comparison of Pollutant Removal Efficiency Planted vs Grassed Bioretention

QUANTITY NAME TUSSOCK SEDGE (Carex stricta) COMMON RUSH (Juncus effusus) SWITCHGRASS (Panicum virgatum) BLUE FLAB (Iris versicolor) JOE PYE WEED (Eupatorium maculatum) BLUE CARDINAL FLOWER (Lobelia siphilitica) FOX SEDGE (Carex Vulpinoidea) **NEW YORK ASTER** (Aster novi-belgii) NEW YORK ASTER (Aster novi-belgii) BLUE CARDINAL FLOWER (Lobelia siphilitica) NEW YORK IRONWEED (Vernonia noveboracensis) NEW ENGLAND ASTER (Aster novae-angliae) BITTER PANICGRASS (Panicum amarum) BLUE CARDINAL FLOWER (Lobelia siphilitica) BLUE FLAB (Iris versicolor) COMMON RUSH (Juncus effusus) NEW YORK IRONWEED (Vernonia noveboracensis) **NEW YORK ASTER** (Aster novi-belgii) SWITCHGRASS (Panicum virgatum) BLUE CARDINAL FLOWER (Lobelia siphilitica) TUSSOCK SEDGE (Carex stricta) BLUE CARDINAL FLOWER (Lobelia siphilitica)

75

350

15

50

20

100

15

20

40

50

50

150

40

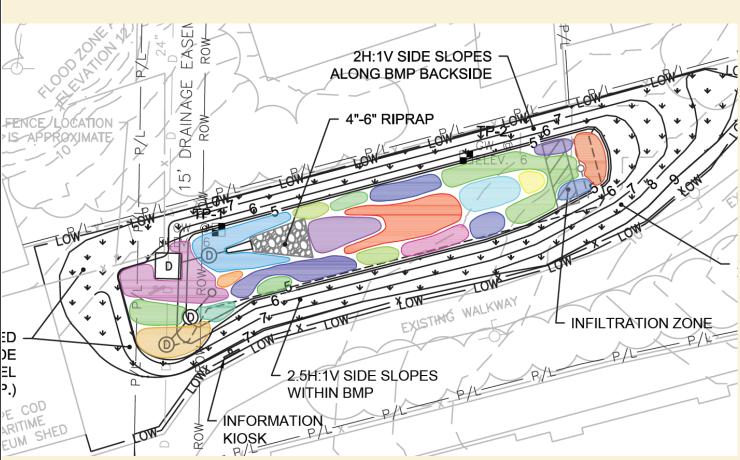
35

75

50

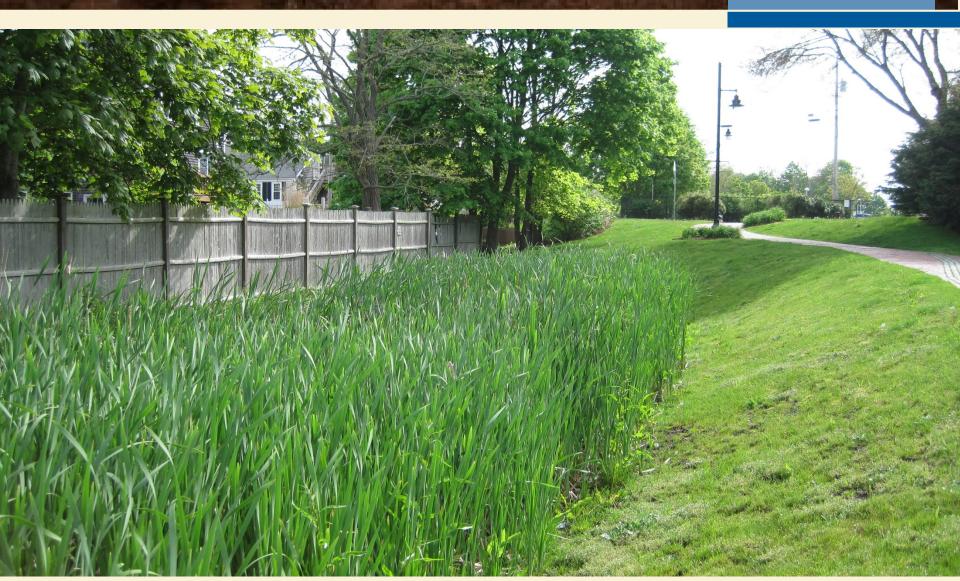
15

15


20

50

20


Traditional Approach

The Site Today

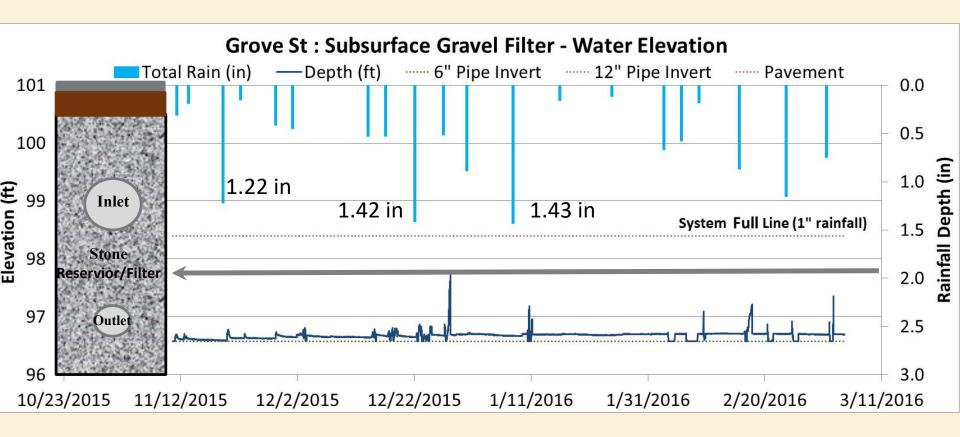
Add it to the toolbox!

Inevitably we need to expand our toolbox

The more
SCMs/Modifications
/Innovations the
better

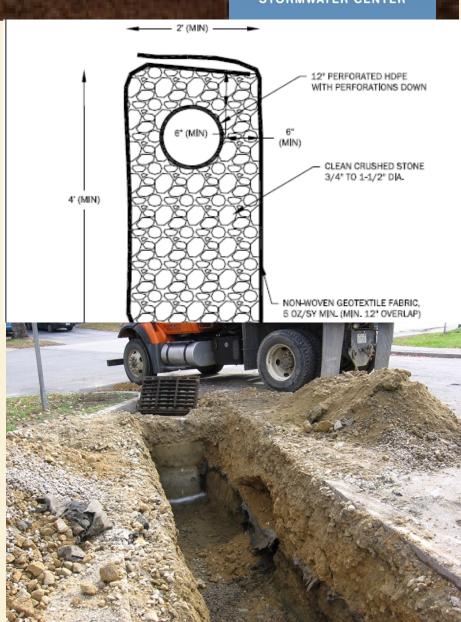
There is not a lot of room for "turf" battles!

Need for Innovation



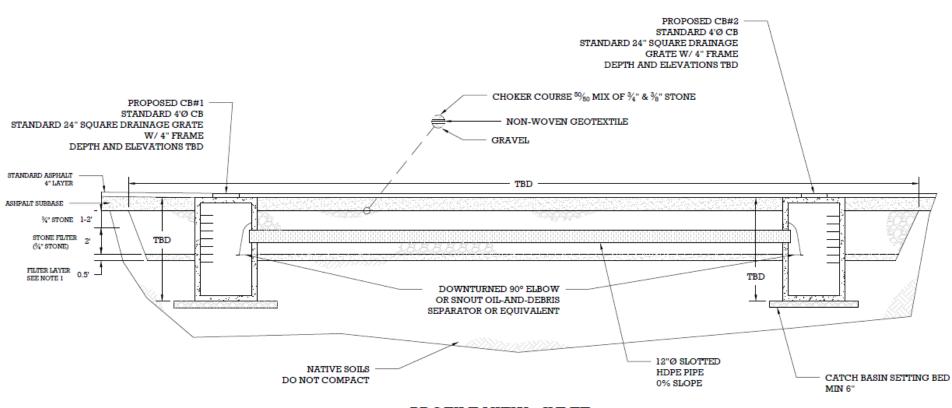
- "Boulanginator"
 (subsurface gravel filter)
 mimics performance of
 PA with regular
 pavement.
- The hydraulic inlet and outlets are controlled through perforated pipes and underdrains.
- treat runoff from 1.96
 acres and 0.61 acres
 DCIA

Boulangenator Performance



Need for Innovation

- In HSG A installed an infiltration trench between two conv CBs
- A simple but effective adaptation instead of solid pipe.
- Treats runoff from 3.36 acres and 1.04 acres DCIA

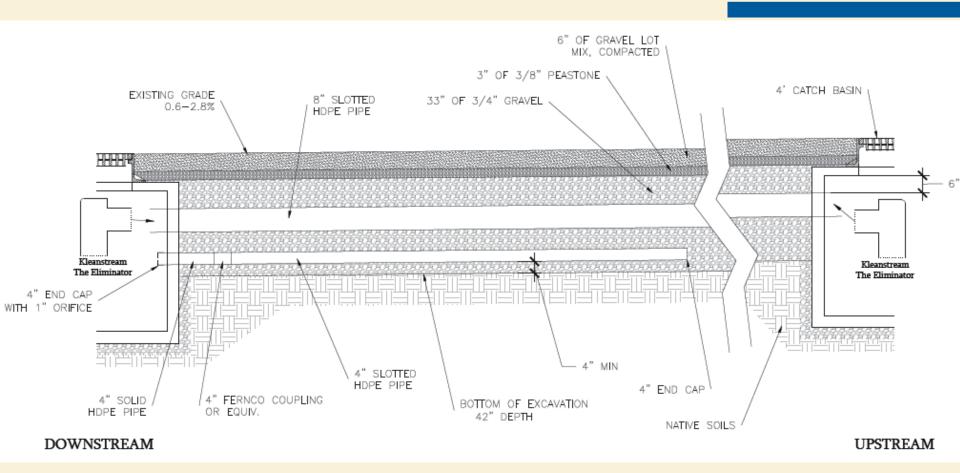


Infiltration Trench

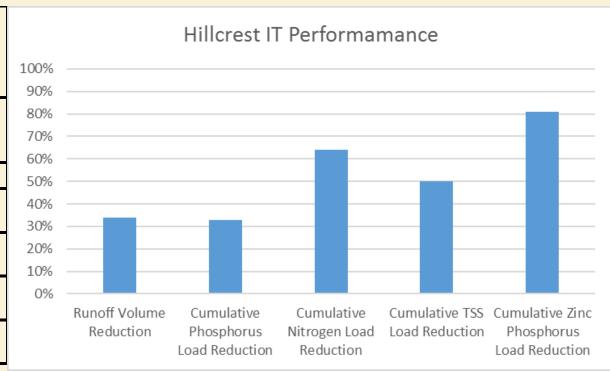
NOTE

 FILTER LAYER GRADATION: MODIFIED 304.1 SAND W/ LESS THAN 6% FINES. OPTIONAL IF SOIL CONDITIONS WARRENT.

PROFILE VIEW - INLET


Red Fox Apartments, Newfound Lake, NH

Red Fox Apartments, Newfound Lake, NH



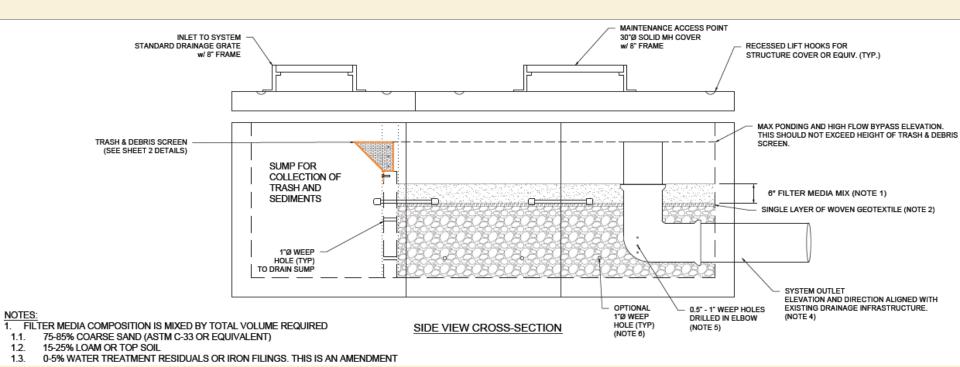
Modeled Performance

Infiltration Trench (2.41 in/hr) BMP Performance Table

BMP Capacity: Depth of Runoff Treated from Impervious Area (inches)	0.1
Runoff Volume Reduction	34%
Cumulative Phosphorus Load Reduction	33%
Cumulative Nitrogen Load Reduction	64%
Cumulative TSS Load Reduction	50%
Cumulative Zinc Phosphorus Load Reduction	81%

SGWS Costs

Site Characteristics and System Treatment Capacity					Annual Removals (lbs/yr)			
Project	-	Impervious Area (acres)	Best Management Practice	Soil Group	Depth of Runoff Treated	Total Suspended Sediment	Total Phosphorus	Total Nitrogen
Hillcrest IT	39,640	0.91	Infiltration Trench	В	0.10	97	0.35	8.8


	Hillcrest		
Water Quality Volume	IT		
Drainage Area (ft²)	39,640		
% Impervious Cover	100%		
Impervious Area (ft²)	39,640		
Conv WQV (ft^3) (@ P = 1.0in)	3,303		
System Treatment			
System Area (ft ²)	10		
Reservior Storage (ft ³)	400		
System Storage (ft ³)	320		
Rainfall Depth Treated (in)	0.10		

Marginal Extra Materials	Marginal Cost Difference		
700 cf stone	\$10,000		

Need for Innovation

Sectional Media Box Filter Design – version 3

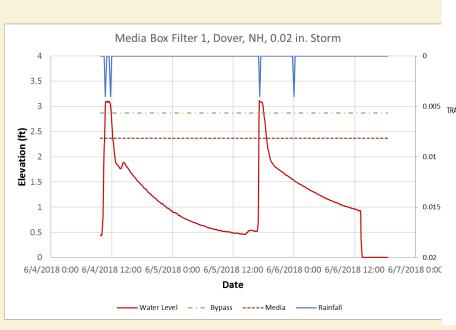
August 2017

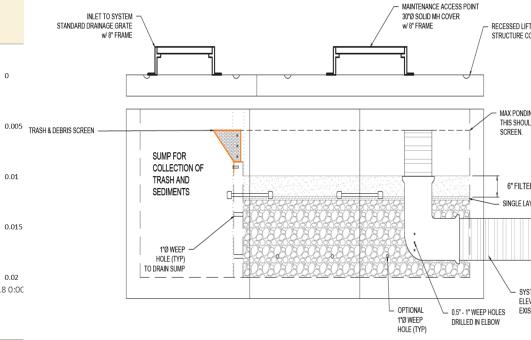
- Filtering Catch Basin Designed to replace conv DSCB where applicable
- This system was the third iteration
- The City has purchased four additional filtering catch basins and will install them in other areas throughout the city.
- The system is designed to treat 0.5 acres (0.25 acres/section) of IC per section and costs 2,400 per

In Operation

Update May 2018

Update May 2018




Update May 2018

Lunch Break

Watershed Tour

Nov 29, 2018