Phase 1 – Modeling and Development of Flow Duration Curves (FDC 1 Project)

Holistic Watershed Management for Existing and Future Land use Development Activities: Opportunities for Action for Local Decision Makers

Task 5 TSC Meeting

Prepared for

U.S. EPA Region 1

Prepared by:

Paradigm Environmental

Great Lakes Environmental Center

Support for Southeast New England Program (SNEP) Communications Strategy and Technical Assistance

Meeting Agenda

April 22, 2021

Project Overview

Data Review and Flow Metrics For Taunton River Basin and Wading River Watershed

Pilot Sub-watershed Selection

HRU Development

Proposed Modeling Approach

Conclusion/Next Steps

Holistic Watershed Management for Existing and Future Land use Development Activities: Opportunities for Action for Local Decision Makers

Project Overview

1, --- 1 --- 1 ---- 1, ---- 1

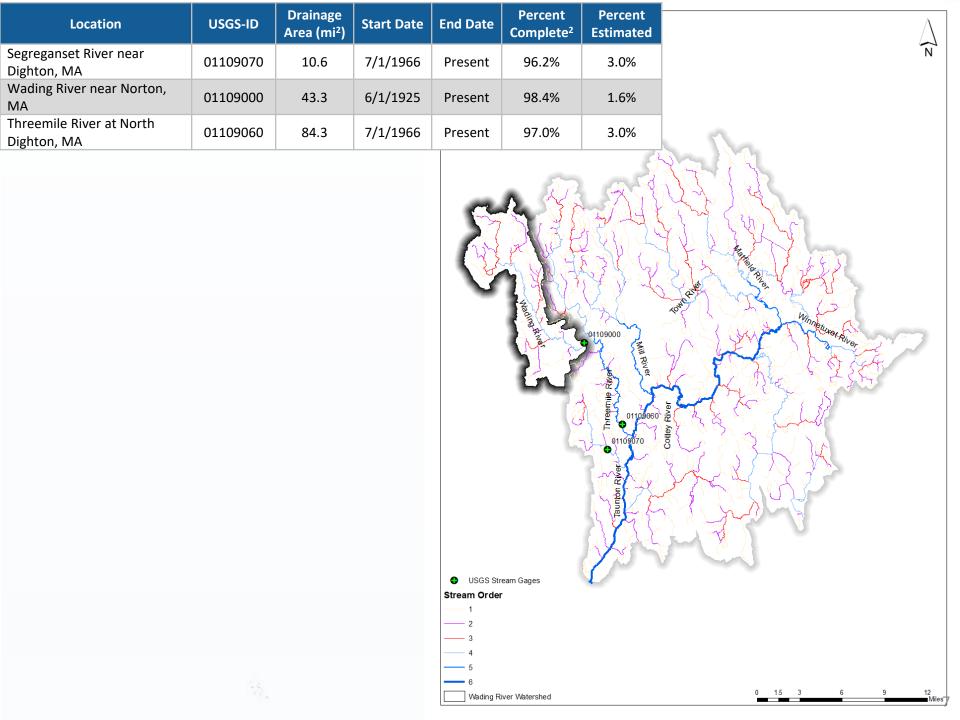
Project Elements/Sub-Tasks	Delivery Date	Status
Task 1: Prepare Quality Assurance Project Plan	12/31/2020	Complete
Task 2: Project Management and Administration	-	On going
Task 3: Technical Steering Committee Meetings	-	On going
Task 4. Coordinate with TSC to Finalize Phase 1 Project Approach	12/31/2020	Complete
Task 5. Compile Available Data/Information for Taunton River Watershed Modeling Analyses	4/30/2021	In Progress
Task 6. Phase 1 Hydrologic Streamflow Modeling Analyses	6/30/2021	-
Task 7. Phase 1 Stormwater/Hydrologic Management Optimization Analyses	9/30/2021	-
Task 8. Phase 1 Project Webinar to SNEP Region	9/30/2021*	-

Project Milestone & Timeline

Holistic Watershed Management for Existing and Future Land use Development Activities: Opportunities for Action for Local Decision Makers

Data Review and Flow Metrics

➤Landscape

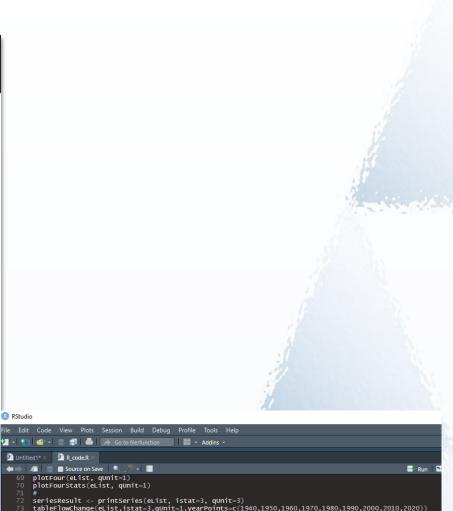

- Landuse/landcover
- Elevation/Slope
- Soils
- Surficial Geology

Dams/Reservoirs

➢ Meteorology Data

Streamflow and metrics

Existing Models

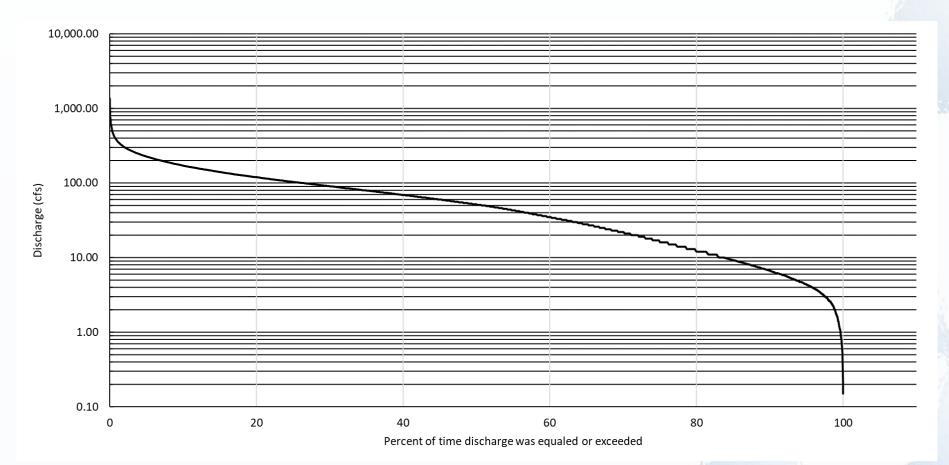


User Guide to Exploration and Graphics for RivEr Trends (EGRET) and dataRetrieval: R Packages for Hydrologic Data

Chapter 10 of Section A, Statistical Analysis **Book 4, Hydrologic Analysis and Interpretation**

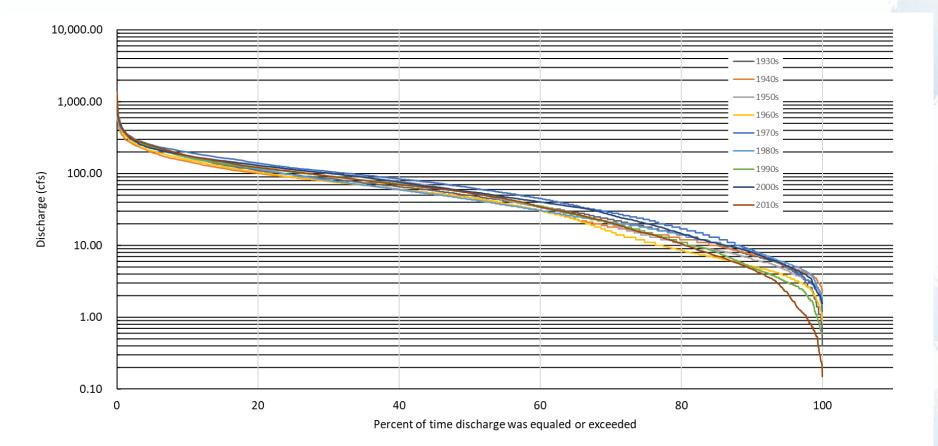
Techniques and Methods 4–A10 Version 2.0, February 2015

U.S. Department of the Interior U.S. Geological Survey

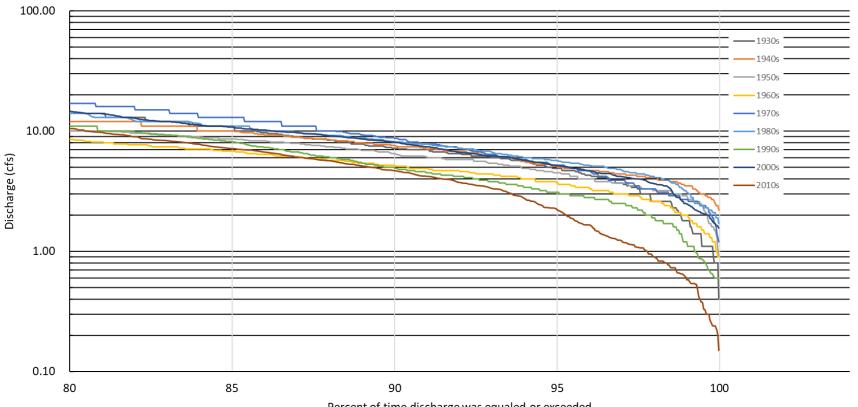



```
plotFour(ELISt, qUIIt=1)
plotFour(ELISt, qUIIt=1)
#
seriesResult <- printSeries(eList, istat=3, qUnit=3)
tableFlowChange(eList, istat=3, qunit=1,yearPoints=c(1940,1950,1960,1970,1980,1990,2000,2010,2020))
library(rkt)
library(zyp)
library(lubridate)
#
make plot, see here for more details <u>http://usgs-r.github.io/EGRET/articles/streamflow_trend.html</u>
plotQuantileKendall(eList)
flowDuration(eList, "06-25", qUnit = 1, span = 30)
#Quantile for summer
plotQuantileKendall(eList, pastart = 6, paLong = 3)
#Quantile for fall
plotQuantileKendall(eList, pastart = 9, paLong = 3)
#Quantile for summer
plotQuantile for since
#Quantile for since
#Qu
```

Group	IHA parameter	Figure	Examples of Ecosystem Impact		
<u>Group 1</u> Magnitude and timing (12 parameters)	Average monthly flow (1 value for each of the 12 months)	Figure 17	Increased flow variations may lead to wash out or stranding of sensitive species		
Group 2	Average annual 1-day minimum flow	Figure 18			
Magnitude and duration (12 parameters)	Average annual 3-day minimum flow	Figure 19			
(parameter)	Average annual 7-day minimum flow	Figure 20			
	Average annual 30-day minimum flow	Figure 21	Prolonged low flows, prolonged		
	Average annual 90-day minimum flow	Figure 22	base flow spikes, and altered inundation period may lead to a		
	Average annual 1-day maximum flow	Figure 18	change in the concentration of		
	Average annual 3-day maximum flow	Figure 19	aquatic organisms, reduction or		
	Average annual 7-day maximum flow	Figure 20	 elimination of plant cover, diminished plant species 		
	Average annual 30-day maximum flow	Figure 21	diversity, and loss of floating		
	Average annual 90-day maximum flow	Figure 22	eggs		
	Number of days per year with zero flow	N/A	-		
	7-day minimum flow divided by mean flow in each year	Figure 23			
<u>Group 3</u> Timing (2 parameters)	Julian date of the minimum flow	Figure 24	Loss of seasonal flow peaks may		
	Julian date of the maximum flow	Figure 24	disrupt cues for spawning, egg hatching, and migration and lead to loss of fish access to Julian date of the maximum flow wetlands or backwaters		
Group 4	Number of low pulses	Figure 25	Flow stabilization may lead to		
Frequency and duration	Average duration of low pulse	Figure 26	invasion of exotic species and		
(4 parameters)	Number of high pulses	Figure 25	reduced water and nutrients to		
	Average duration of high pulses	Figure 26	floodplain plant species		
Group 5	Rise rate (mean of all positive differences)	Figure 27	Rapid changes in river stage and		
Rate of change and frequency (3 parameters)	Fall rate (mean of all negative differences)	Figure 27	accelerated flood recession may cause wash out and stranding o		
	Number of flow reversals	Figure 28	aquatic species, failure of seedling establishment		

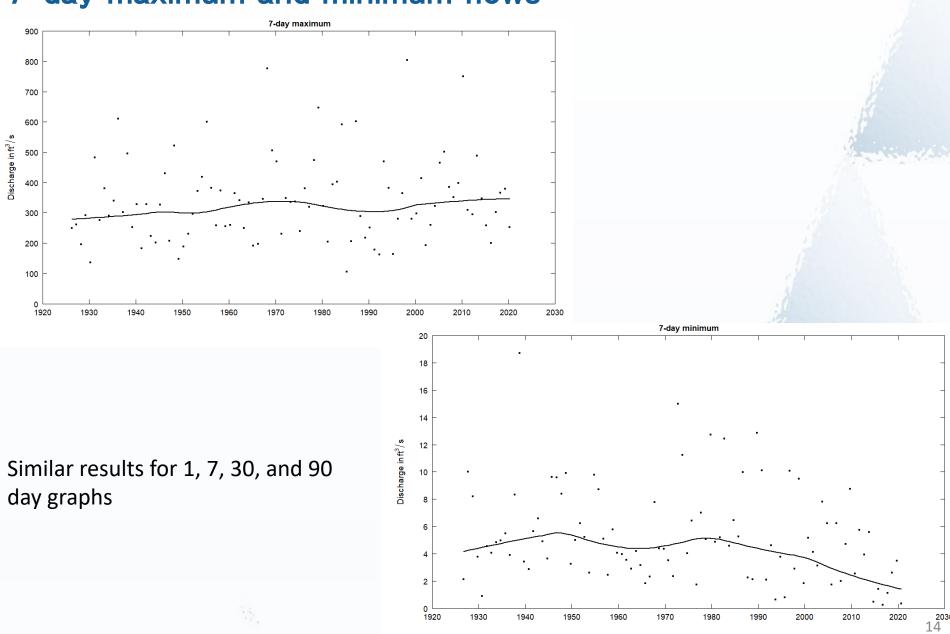

Evaluation Metric	Description	Source	Figure	Unit
Trend Slope	Quantile-Kendall plot	EGRET	Figure 30 & Figure 31	% per year
Variability	Discharge variability over time	EGRET	Figure 29	Unitless
Annual Nutrient (P&N) load export (excluding channel processes)	Pollutant load Export rates	TSC	N/A – will be presented with modeling results in Task 6	lbs/acres/year
Annual surface runoff volume	Runoff yields	TSC	Figure 33	inches/year
Annual Groundwater recharge	Infiltration	TSC	N/A – will be presented with modeling results in Task 6	inches/year
Ecodeficit/Ecosurplus	Flow Duration Curve	TSC	Figure 35	Dimensionless
Composite IHA	Flow Duration Curve		N/A – will be presented with modeling results in Task 6	Dimensionless
Q _{Bankfull}	Flooding	TSC	Figure 34	cfs
Richard-Baker Flashiness index	Quicker routing of storm flows to streams and rivers relative to natural conditions	TSC	Figure 32	Dimensionless
Critical Shear Stress (mobilization of particles)	Streambed Mobility/Stability	TSC	N/A – will be presented with modeling results in Task 6	lb-force/ft ²
Evapotranspiration rate	Ecohydrology	TSC	N/A – will be presented with modeling results in Task 6	mm day ⁻¹
Latent heat flux	Ecohydrology	TSC	N/A – will be presented with modeling results in Task 6	MJ m² day¹

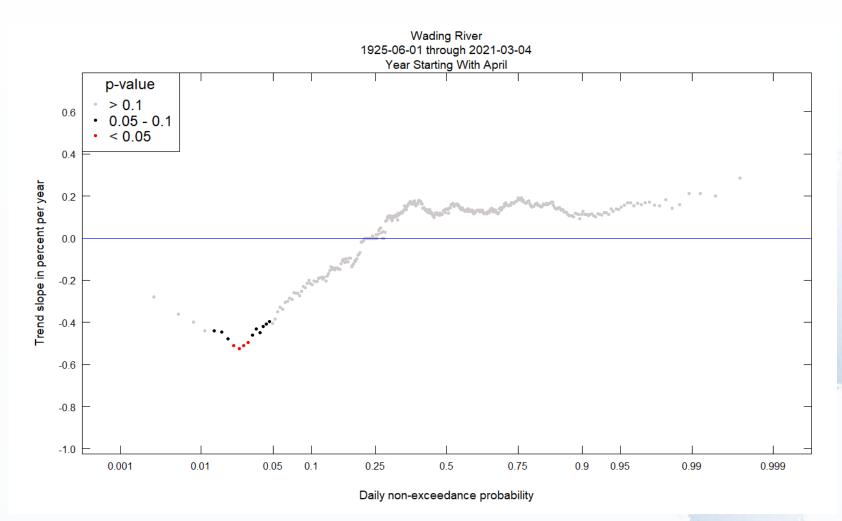
Wading River Flow Duration Curve



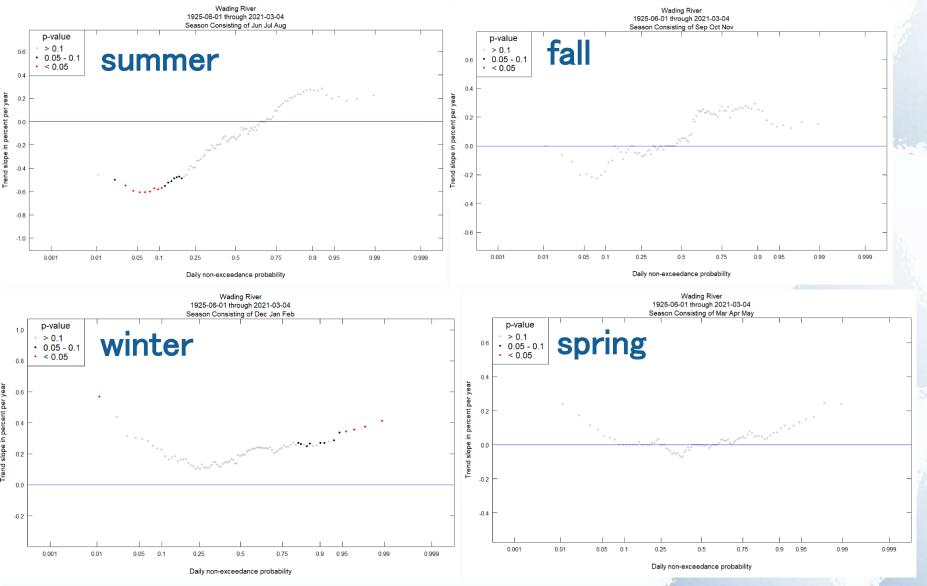
11

Wading River Rating Curve - by decade

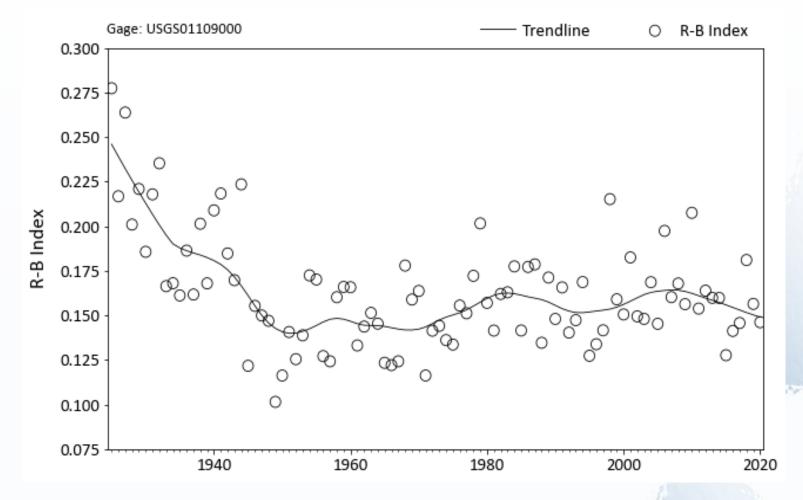



Percent of time discharge was equaled or exceeded

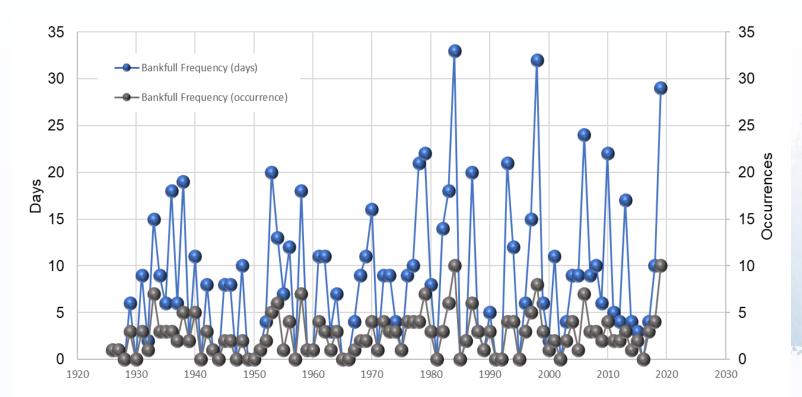
7-day maximum and minimum flows



Quantile-Kendall plot


Each point in the graph represents the estimated trend slope, expressed in percent change per year, for discharge values of the given rank. The x-axis presents daily non-exceedance probability with low flows and their trends on the far left of the graph and high flows and their trends on the far right. The black and red points indicate that the trend is statistically significant at the given p-value. Many of the lowest flows in the Wading River are becoming significantly (p < 0.05-1, p<0.05) lower, reducing by between 0.4% to 0.6% a year.

Quantile-Kendall plots


\$.

Richard-Baker flashiness index

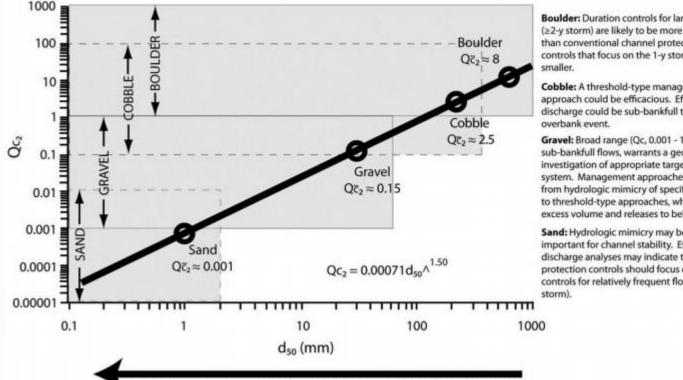
17

Bankfull

Bankfull frequency by occurrence and total days >= bankfull. Based on a bankfull flow of 295 ft³/s (Bent and Waite, 2013).

Bankfull discharge often associated with channel forming flows – i.e sediment mobilization

Sediment Mobilization


URBAN STREAMS

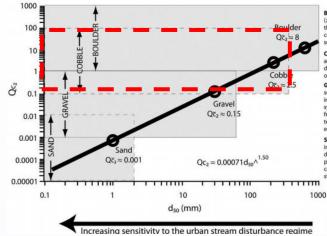
Addressing the urban stream disturbance regime

R. J. Hawley^{1,2,4} and G. J. Vietz^{3,5}

¹Sustainable Streams, LLC, 1948 Deer Park Avenue, Louisville, Kentucky 40205 USA ²Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523 USA ³School of Ecosystem and Forest Sciences, The University of Melbourne, Burnley, Victoria 3121 Australia

Abstract: Thresholds for particle entrainment and natural disturbance frequency vary across hydrogeomorphic settings, but urbanization increases the rate and extent of channel erosion and sediment transport in alluvial channels. The urban disturbance regime is a change in the frequency, magnitude, and duration of hydrologically induced disturbance on the stream channel and ecosystem that can lead to geomorphic and ecological degradation. To preserve stream stability and ecological function, stormwater management systems should be optimized to maintain the natural disturbance regime of streambed material within the

Boulder: Duration controls for larger events (≥2-y storm) are likely to be more important than conventional channel protection controls that focus on the 1-y storm and

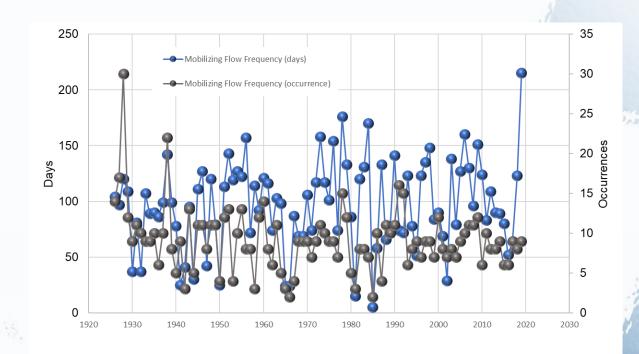

Cobble: A threshold-type management approach could be efficacious. Effective discharge could be sub-bankfull to an

Gravel: Broad range (Qc, 0.001 - 1), typically sub-bankfull flows, warrants a geomorphic investigation of appropriate targets for the system. Management approaches may range from hydrologic mimicry of specific flow ranges to threshold-type approaches, which manage excess volume and releases to below the Qc.

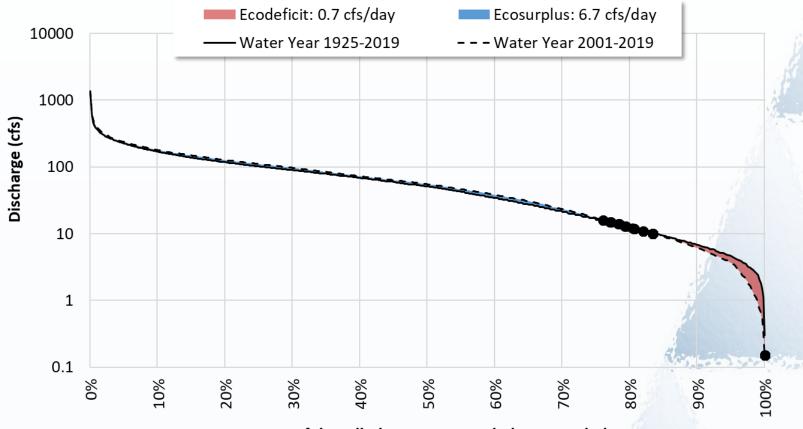
Sand: Hydrologic mimicry may be very important for channel stability. Effective discharge analyses may indicate that channel protection controls should focus on duration controls for relatively frequent flows (<< 1-y

Increasing sensitivity to the urban stream disturbance regime

Based on some <u>observed data</u>: assumed Taunton has a cobble bottom

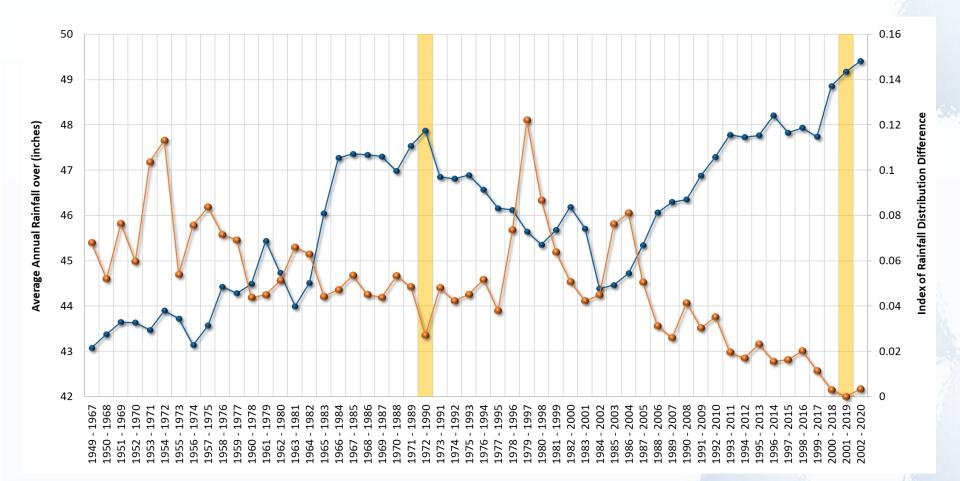


Boulder: Duration controls for larger events (>2-y storm) are likely to be more important than conventional channel protection controls that focus on the 1-y storm and smaller.


Cobble: A threshold-type management approach could be efficacious. Effective discharge could be sub-bankfull to an overbank event.

Gravel: Broad range (Qc, 0.001 - 1), typically sub-bankfull flows, warrants a geomorphic investigation of appropriate targets for the system. Management approaches may range from hydrologic mimicry of specific flow ranges to threshold-type approaches, which manage excess volume and releases to below the Qc.

Sand: Hydrologic mimicry may be very important for channel stability. Effective discharge analyses may indicate that channel protection controls should focus on duration controls for relatively frequent flows (<< 1-y storm).



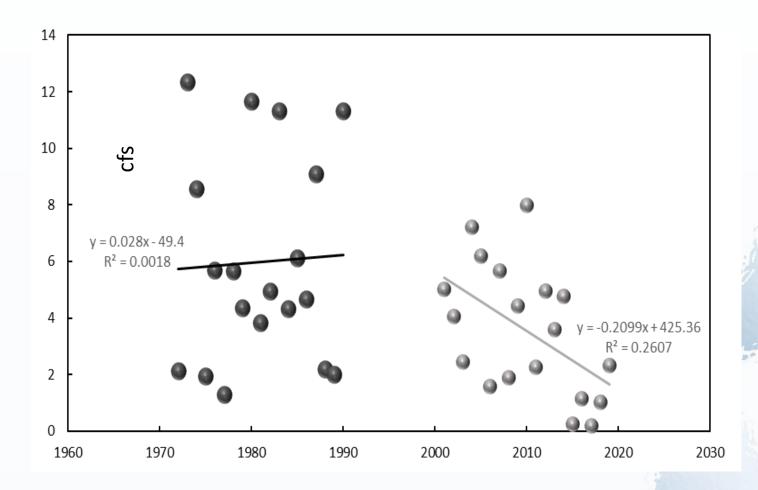
Eco-deficit and eco-surplus

Percent of time discharge was equaled or exceeded

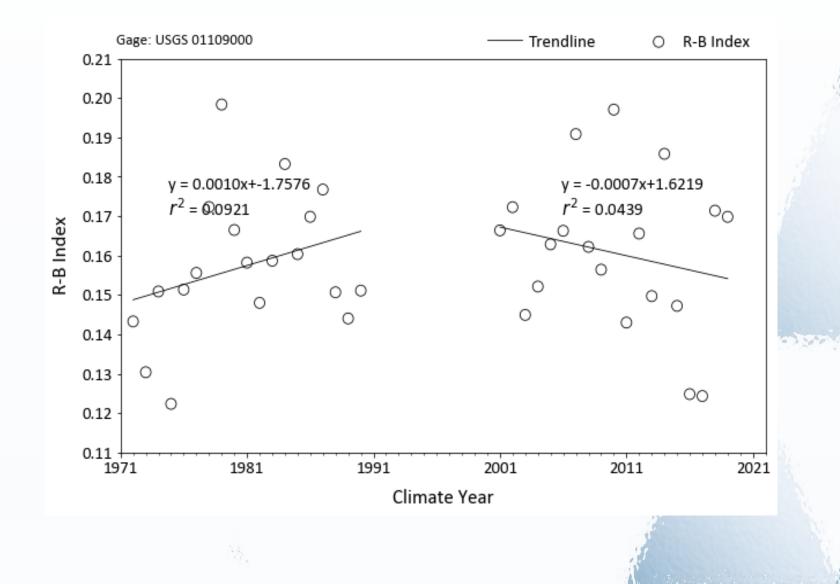
Average annual rainfall depth and distribution

Group 1 IHA parameter comparisons

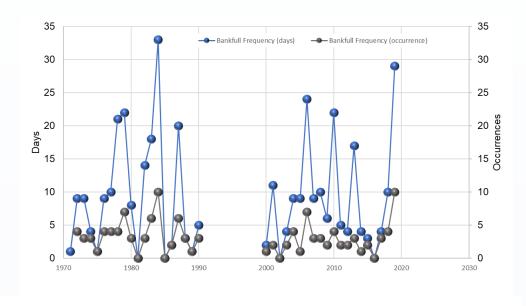
Group 1. Magnitude and timing	1972-1990 Avera	72-1990 2001-2019 Average (cfs)	
January	116.19	102.66	-11.65%
February	117.82	104.57	-11.25%
March	143.77	151.01	5.04%
April	140.82	147.19	4.52%
May	89.20	82.37	-7.66%
June	66.84	69.24	3.58%
July	23.91	28.51	19.22%
August	31.25	17.77	-43.15%
September	23.54	20.07	-14.77%
October	44.21	45.98	4.02%
November	75.90	74.35	-2.05%
December	107.81	105.47	-2.17%

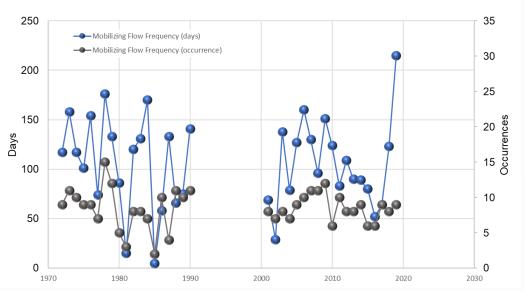

Group 2 IHA parameter comparisons

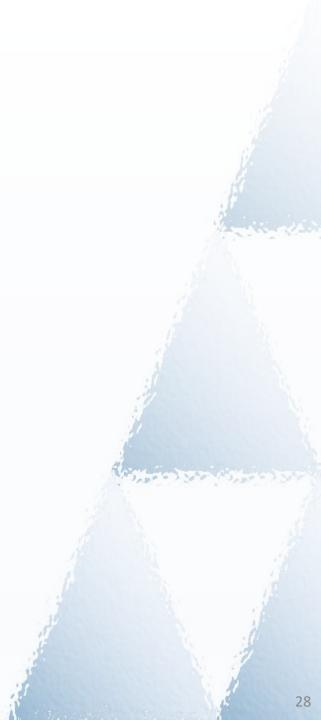
Group 2. Magnitude and duration of annual extremes	1972-1990 2001-2019 Average (cfs)		% difference	
1 day minimum	5.20	3.44	-34.0%	
1 day maximum	501.32	544.25	8.6%	
3 day minimum	5.98	3.54	-40.8%	
3 day maximum	431.72	453.63	5.1%	
7 day minimum	6.92	3.85	-44.4%	
7 day maximum	351.07	361.91	3.1%	
30 day minimum	11.32	7.48	-33.9%	
30 day maximum	222.61	233.40	4.8%	
90 day minimum	18.73	13.82	-26.2%	
90 day maximum	159.32	156.19	-2.0%	


Groups 3,4,5 IHA parameter comparisons

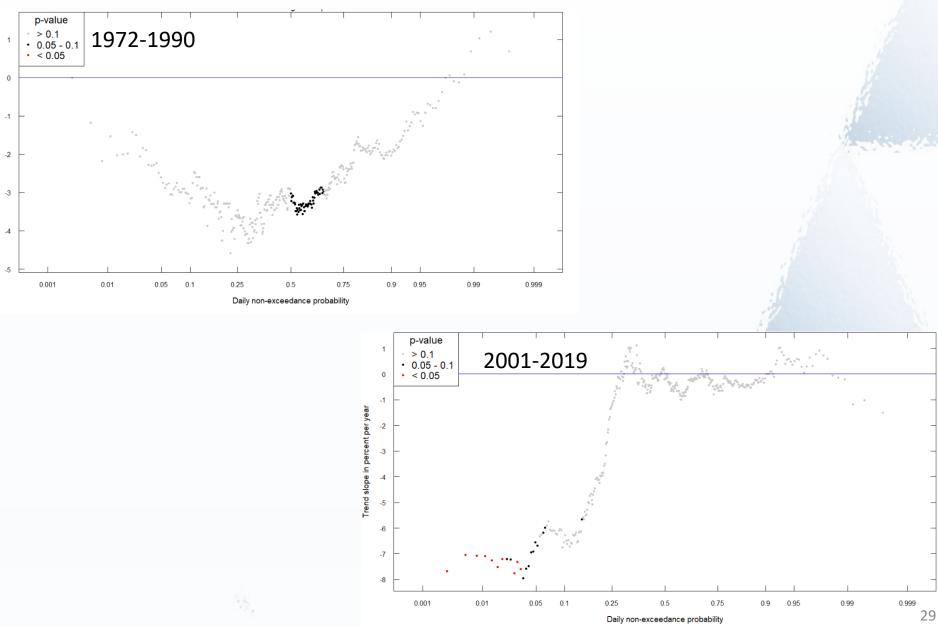
	1972-1990	2001-2019		
Group 3. Timing of annual extremes	Average J	ulian Day	% difference	
Julian date of annual minimum	230	249		8.30%
Julian date of annual maximum	511	529		3.51%
Group 4. Frequency and duration of	Average Count/Average #			
high (90 th percentile) and low (10 th	Days			
percentile) pulses			% difference	
Low pulse count	453	771		70.20%
Low pulse duration (days)	7.95	12.44		56.47%
High pulse count	825	756	Reitherents	-8.36%
High Pulse duration (days)	6.11	5.77		-5.57%
Group 5 Rate and frequency of	Average Count/			
change	Average cfs		% difference	
Fall rate (cfs)	4569	4826		5.62%
Fall count	22.58	22.69	J.	0.48%
Rise rate(cfs)	1956	1982		1.33%
Rise count	4569	4826		5.62%


3-day minimum flows




Richard-baker flashiness

Bankfull and mobilizing flows



Quantile-Kendall

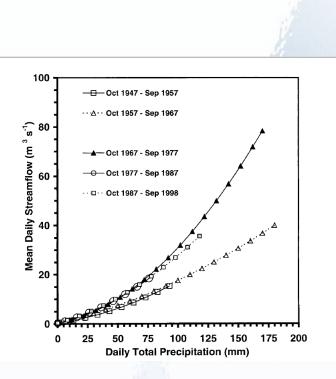
Trend slope in percent per year

Precipitation vs Streamflow

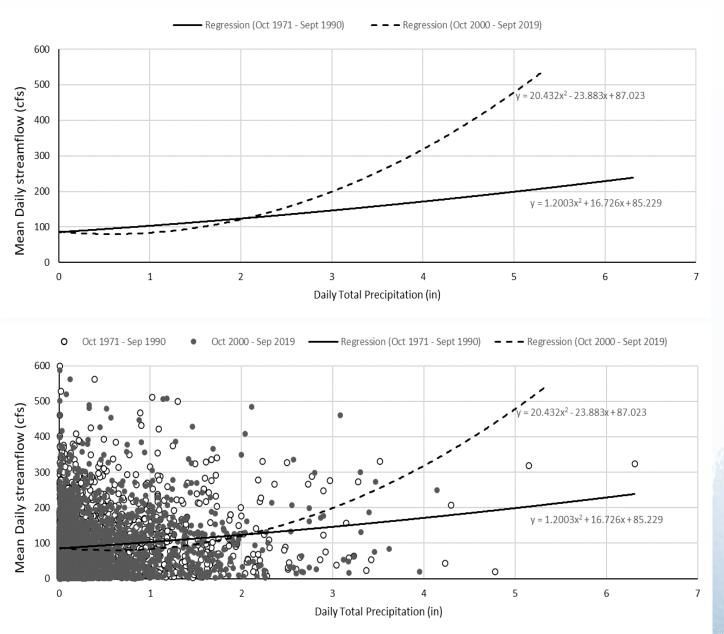
Landscape Ecology 17: 471–489, 2002. © 2002 Kluwer Academic Publishers. Printed in the Netherlands. 471

Changes in anthropogenic impervious surfaces, precipitation and daily streamflow discharge: a historical perspective in a mid-atlantic subwatershed

David B. Jennings* and S. Taylor Jarnagin

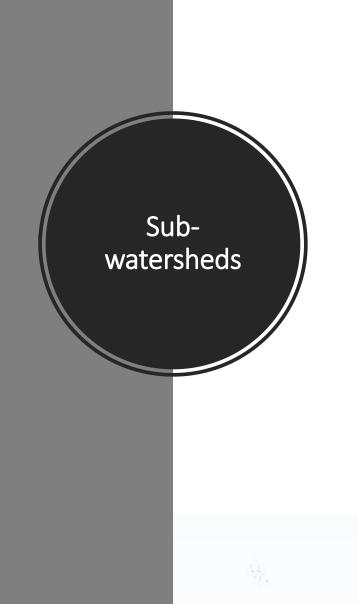

US Environmental Protection Agency, 12201 Sunrise Valley Dr., Reston, VA 20192, USA; *Author for correspondence (e-mail: jennings.david@epa.gov)

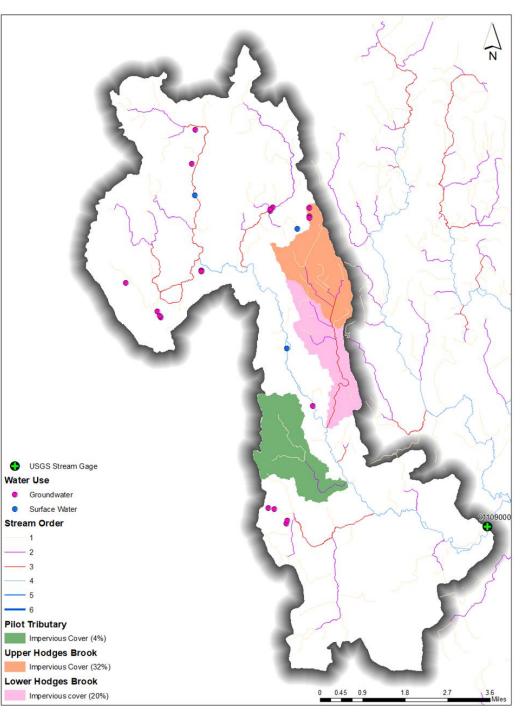
Received 28 August 2001; accepted in revised form 6 February 2002


Key words: Historical aerial photography, Impervious surfaces, Precipitation, Streamflow, Urban landscape change

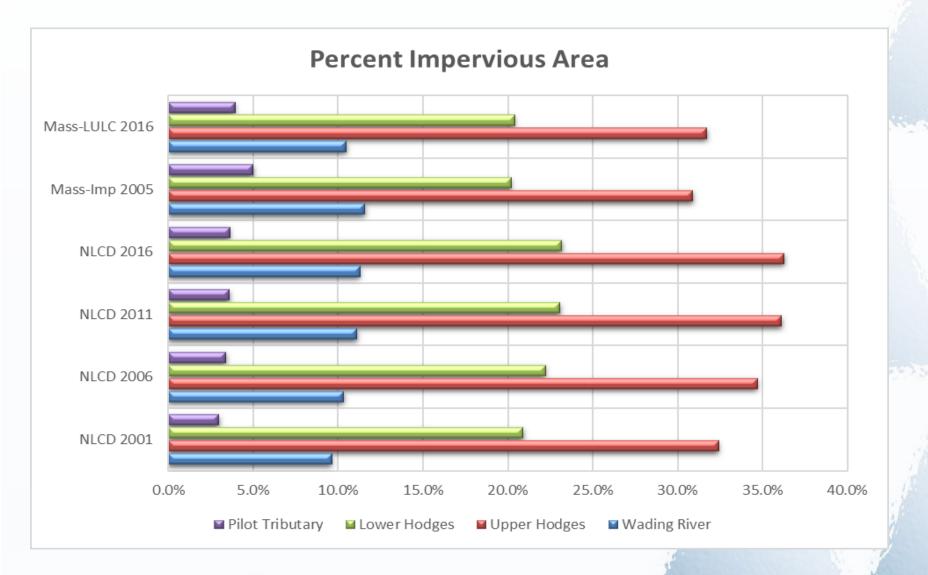
Abstract

Aerial photography provides a historical vehicle for determining long-term urban landscape change and, with concurrent daily streamflow and precipitation records, allows the historical relationship of anthropogenic impervious surfaces and streamflow to be explored. Anthropogenic impervious surface area in the upper Accotink Creek subwatershed (near Annandala, Virginia, USA) was mapped from six dates of rectified historical aerial photography ranging from 1949 to 1994. Results show that anthropogenic impervious surface area has grown from approximately 3% in 1949 to 33% in 1994. Coincident to this period, analysis of historical mean daily streamflow shows a statistically significant increase in the streamflow discharge response (per meter of precipitation) associated with "normal" and "extreme" daily precipitation levels. Significant changes were also observed in the frequency of daily streamflow discharge at given volumes above and below the historical daily mean. Simultaneously, the historical magnitude, frequency and pattern of precipitation values ≥ 0 mm, ≥ 6.0 mm and ≥ 35.0 mm show either no statistically significant change or influence on streamflow. Historical changes in streamflow in this basin appear to be related to increases in anthropogenic impervious surface cover. Historical aerial photography is a viable tool for revealing long-term landscape and ecosystem relationships, and allows land-scape investigations to extend beyond the temporal and spatial constraints of historical satellite remote sensing data.

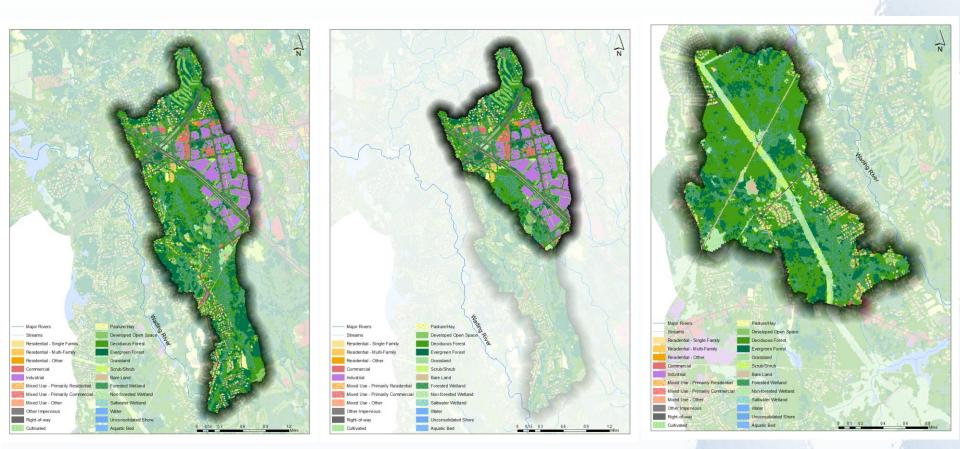

Streamflow vs precipitation



32


Holistic Watershed Management for Existing and Future Land use Development Activities: Opportunities for Action for Local Decision Makers

Pilot Subwatershed selection

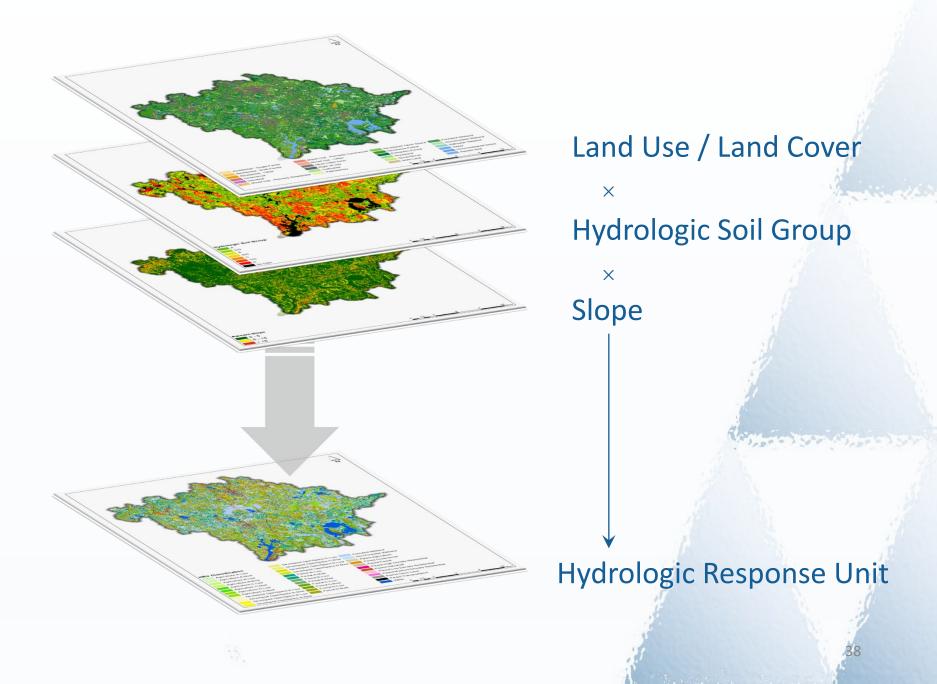

Impervious Cover

Landuse

Lower Hodges Brook Upper Hodges Brook

Pilot Tributary

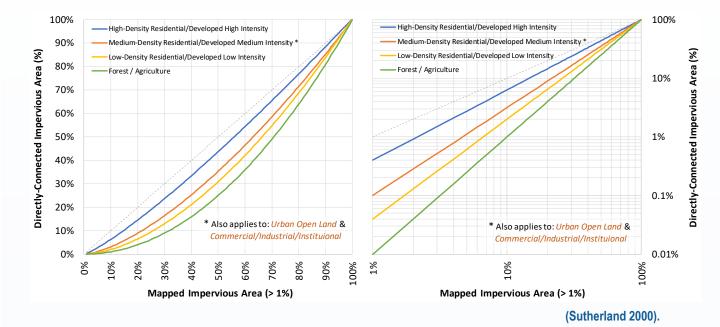
Area = 2,507 acre (3.9 mi²) IC = 20%


Area = 1,337 acre (2.1 mi²) IC = 32%

Area = 1,458 acre (2.3 mi²) IC = 4%

Holistic Watershed Management for Existing and Future Land use Development Activities: Opportunities for Action for Local Decision Makers

HRU Development


Martin Street Street

HRU Code	HRU Description	Land Use	Soil	Slope	Land Cover
1001	Paved Forest	Paved Forest	N/A	N/A	Impervious
2001	Paved Agriculture	Paved Agriculture	N/A	N/A	Impervious
3001	Paved Commercial	Paved Commercial	N/A	N/A	Impervious
4001	Paved Industrial	Paved Industrial	N/A	N/A	Impervious
5001	Paved Low Density Residential	Paved Low Density Residential	N/A	N/A	Impervious
6001	Paved Medium Density Residential	Paved Medium Density Residential	N/A	N/A	Impervious
7001	Paved High Density Residential	Paved High Density Residential	N/A	N/A	Impervious
8001	Paved Transportation	Paved Transportation	N/A	N/A	Impervious
9001	Paved Open Land	Paved Open Land	N/A	N/A	Imperviou
10110	Developed OpenSpace-A-Low	Developed OpenSpace	A	Low	Pervious
10120	Developed OpenSpace-A-Med	Developed OpenSpace	А	Med	Pervious
10210	Developed OpenSpace-B-Low	Developed OpenSpace	В	Low	Pervious
10220	Developed OpenSpace-B-Med	Developed OpenSpace	В	Med	Pervious
10310	Developed OpenSpace-C-Low	Developed OpenSpace	С	Low	Pervious
10320	Developed OpenSpace-C-Med	Developed OpenSpace	С	Med	Pervious
10410	Developed OpenSpace-D-Low	Developed OpenSpace	D	Low	Pervious
10420	Developed OpenSpace-D-Med	Developed OpenSpace	D	Med	Pervious
11000	Forested Wetland	Forested Wetland	N/A	N/A	Pervious
12000	Non-Forested Wetland	Non-Forested Wetland	N/A	N/A	Pervious
13110	Forest-A-Low	Forest	А	Low	Pervious
13120	Forest-A-Med	Forest	А	Med	Pervious
13210	Forest-B-Low	Forest	В	Low	Pervious
13220	Forest-B-Med	Forest	В	Med	Pervious
13310	Forest-C-Low	Forest	С	Low	Pervious
13320	Forest-C-Med	Forest	С	Med	Pervious
13410	Forest-D-Low	Forest	D	Low	Pervious
13420	Forest-D-Med	Forest	D	Med	Pervious
14110	Agriculture-A-Low	Agriculture	А	Low	Pervious
14120	Agriculture-A-Med	Agriculture	А	Med	Pervious
14210	Agriculture-B-Low	Agriculture	В	Low	Pervious
14220	Agriculture-B-Med	Agriculture	В	Med	Pervious
14310	Agriculture-C-Low	Agriculture	С	Low	Pervious
14320	Agriculture-C-Med	Agriculture	С	Med	Pervious
14410	Agriculture-D-Low	Agriculture	D	Low	Pervious
14420	Agriculture-D-Med	Agriculture	D	Med	Pervious
15000	Water	Water	N/A	N/A	Pervious

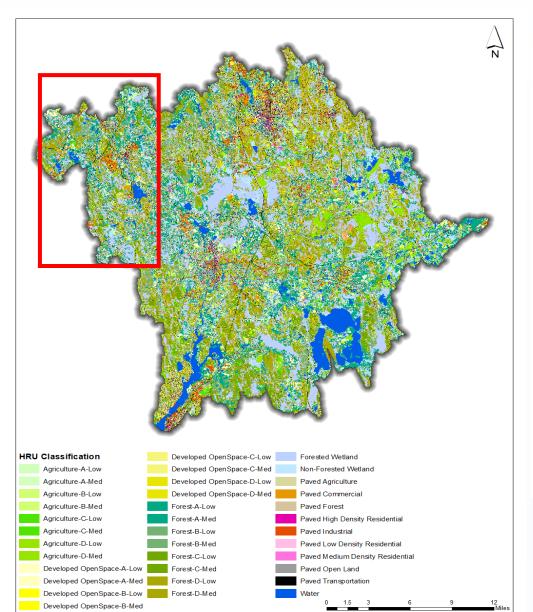
HRU Classification Table

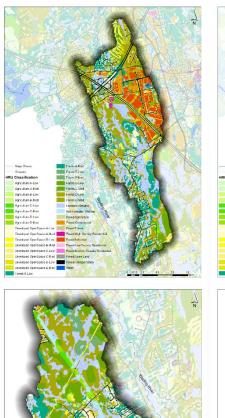
Mapped vs Effective Impervious

Wading River Results *

HRU Description	Total Impervious Area (acre)	Effective Impervious Area (acre)	EIA (%)
Paved Forest	0.3	0.0	0%
Paved Agriculture	3.4	0.0	0%
Paved Commercial	375.8	96.5	26%
Paved Industrial	366.2	103.5	28%
Paved Low Density Residential	778.4	147.4	19%
Paved Medium Density Residential	20.5	5.6	27%
Paved High Density Residential	147.4	122.3	83%
Paved Transportation	956.5	793.7	83%
Paved Open Land	245.7	61.9	25%
Total	2,894.2	1,330.9	46%

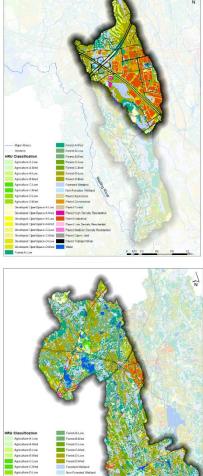
 Basinwide summary.
 Distributions vary by sub-watershed


and a service and a service and a service a se


Comparison to HSPF Model

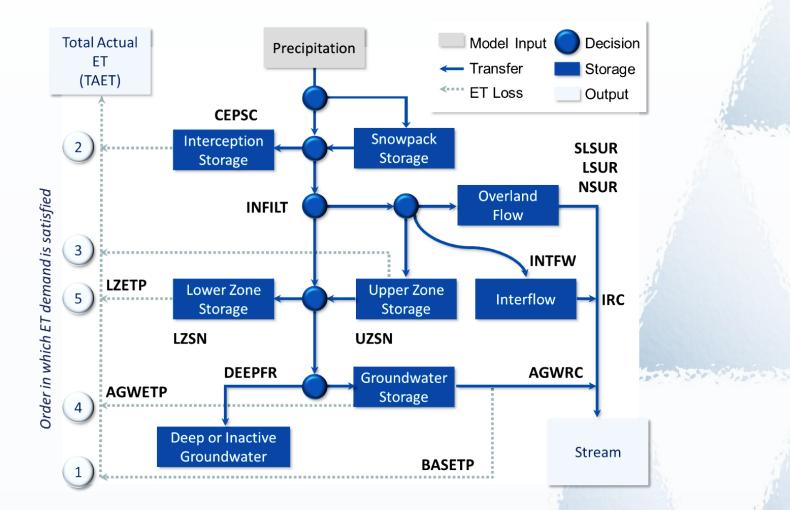
Wading River Model	HSPF Model* (acre)	LSPC Model (acre)	Difference (%)
Total Impervious Area	1,367.2	1,330.9	-2.65%
Total Pervious Area	26,231.4	26,270.3	0.15%
Total	27,598.6	27,601.2	0.01%

* USGS published HSPF models for the Taunton basin (Barbaro and Sorenson, 2013)

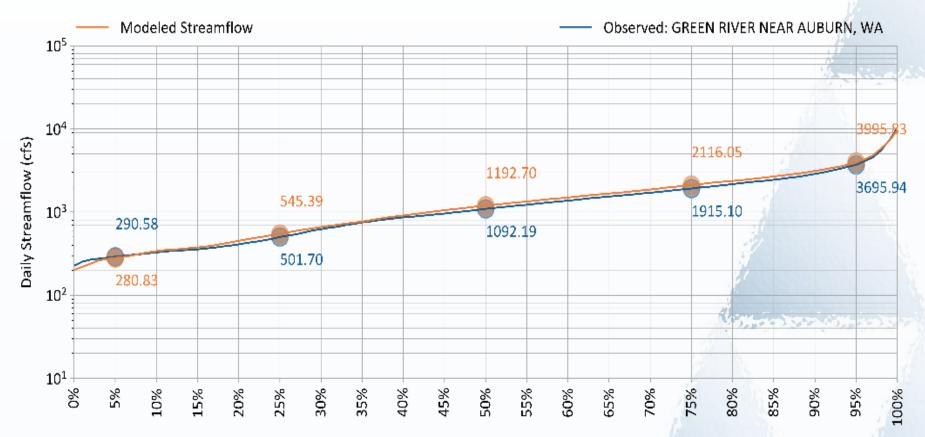

HRUs for Taunton Basin

RU Classification Agriculture A Low Agriculture A Ned Agriculture & Ned Agriculture & Ned Agriculture & Ned

www.ipmi.Cp

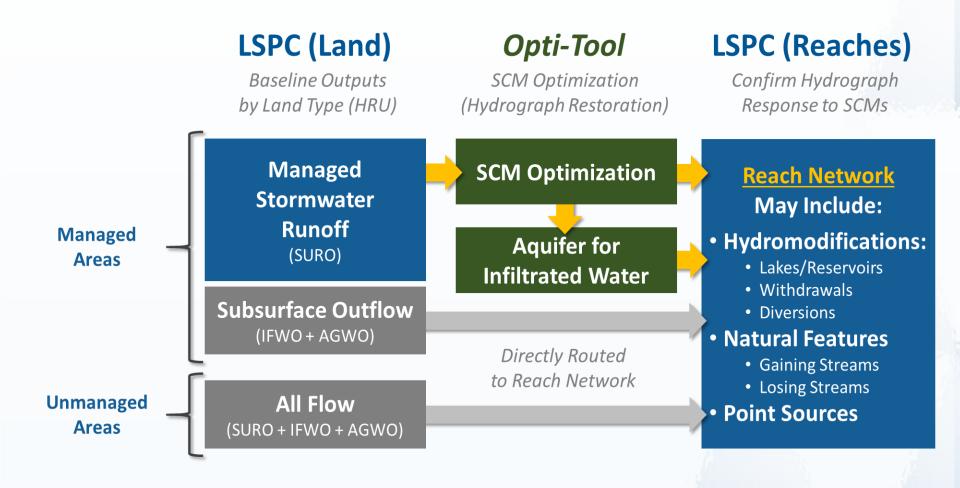


HRU	U Classification	Forest-B-Low
	Agriculture-A-Low	Fuest-8-Med
	Agriculture-A-Med	Forest-CLow
	Agriculture-B-Low	Forest-C-Med
	Agriculture-B-Med	Forest-D Low
	Agriculture-C-Low	FirestOlled
	Agriculture-C-Med	Forested Wetland
	Agriculture-D-Low	Non-Forested Wetland
	Agriculture-D-Med	Paved Agriculture
	Developed OpenSpace-A-Low	Paved Commercial
1	Developed OpenSpace-A-Med	Paved Forest
	Developed OpenSpace-B-Low	Paved High Density Residential
	Developed OpenSpace-8-Med	Paved industrial
	Developed OpenSpace-C-Low	Paved Low Density Residential
	Developed OpenSpace-C-Med	Paved Medium Density Residential
	Developed OpenSpace-D-Low	Paved Open Land
	Developed OpenSpace-D-Med	Paved Transportation
	Forest-A-Low	Water


Holistic Watershed Management for Existing and Future Land use Development Activities: Opportunities for Action for Local Decision Makers

Proposed Modeling Approach

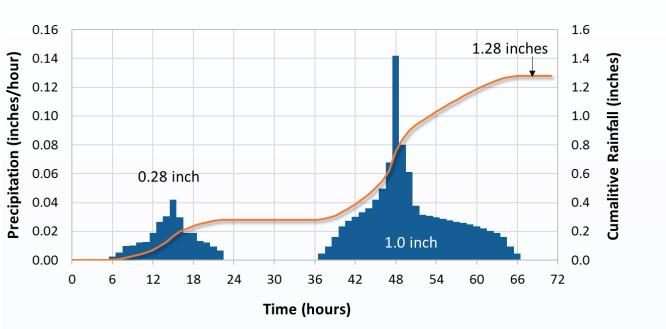
Model schematic for hydrology


Observed vs predicted FDCs

Flow Percentile (%) (10/01/2009 - 09/30/2019)

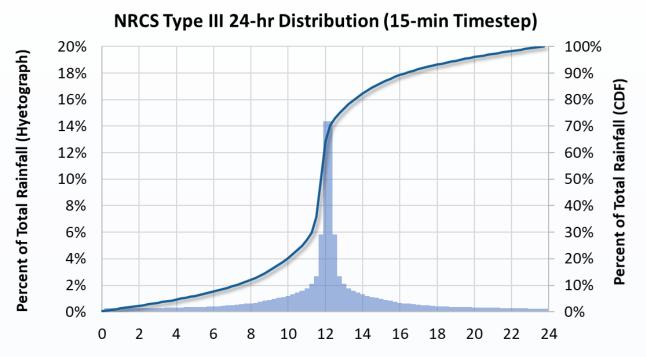
Calibration metrics

					Performance Metrics (Seasonal)												
				P	BIA	S			R-so	qua	red		Na	Nash-Sutcliffe E			
Hydrology Monitoring	Hydrology Monitoring Locations			Winter	Spring	Summer	Fall	AII	Winter	Spring	Summer	Fall	AII	Winter	Spring	Summer	Fall
GREEN RIVER NEAR AUBURN, WA			-	-	+	-	-										
GREEN RIVER AT 200TH STREET AT KENT, WA			-	-	-	-	-										
CEDAR RIVER BELOW DIVERSION		JRG WA	+	+	+	+	-										
CEDAR RIVER AT RENTON, WA				+	+	+											
						т	-										
WHITE RIVER AT R STREET NEAR A	AUBURN, WA		+	+	+	+	+										
Calibration Metrics			led E	rror			-					Reference					
All Conditions	Very Good <5%	Good 5% - 109	Va			tisfa % -			Unsatisfactory >15%								
Seasonal Flows	<570	570-107	0	-	10% - 15%		>15%			_							
Highest 10% of Daily Flow Rates	<10% 10% - 15%							>25%				Moriasi et al. (2015)					
Lowest 50% of Daily Flow Rates			%		15% - 25%						M						
Days Categorized as Storm Flow	-																
Days Categorized as Baseflow	-																
		Recomme	nded Error Criteria (R ²)				R ²)										
Calibration Metrics	Very Good	Good			Satisfactory			/	Unsatisfactory				Reference				
All Conditions	>0.85	0.75 - 0.8	35		0.60 - 0.75		0.60 - 0.75 ≤0.60										
Seasonal Flows																	
Highest 10% of Daily Flow Rates												- /2	015				
Lowest 50% of Daily Flow Rates	>0.75	0.60 - 0.7	75		0.5	50 - 0	0.60			≤0	0.50		IVI	onas	ieta	ai. (2	015
Days Categorized as Storm Flow]																
Days Categorized as Baseflow																	
Calibration Metrics		Recommended Error Criter				ria (E	=)						R	efere	ance		
	Very Good	Good			Sa	tisfa	ctory	/	Ur	nsati	sfac	tory			none		
All Conditions	>0.80	0.70 - 0.8	30		0.5	50 - (0.70			≤0	0.50						
Seasonal Flows	-																
Highest 10% of Daily Flow Rates	-									м	orias	ieta	al. (2	015			
Lowest 50% of Daily Flow Rates	>0.70	0.50 - 0.7	70		0.4	40 - (0.50			≤0).40					(-	
Days Categorized as Storm Flow	_													Δ	6		
Days Categorized as Baseflow											-0						


Management Questions addressed through SCM optimization modeling

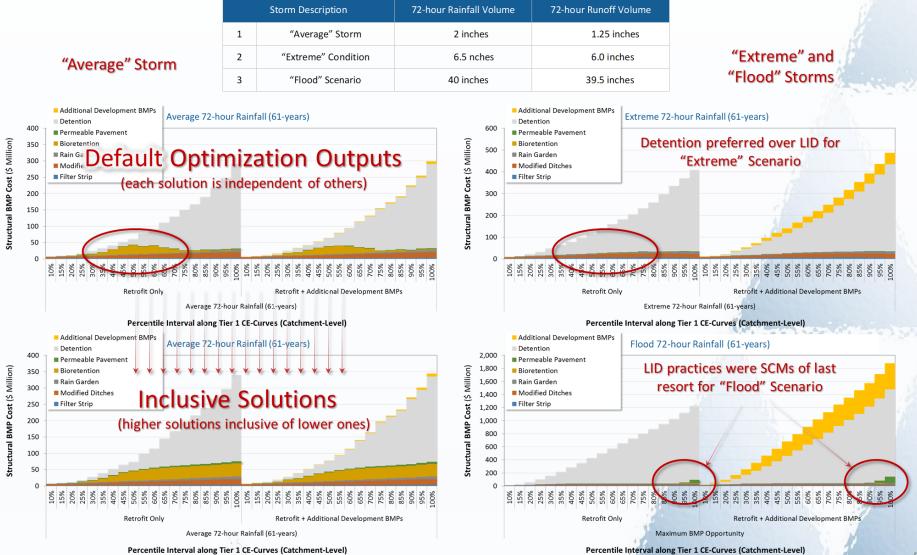
	Competing Management Questions							
Who?	Which agencies need to cooperate to address hydrology and water quality impairment?							
What?	What types of and how many SCMs are needed to restore an impaired hydrograph?							
When?	How should agencies prioritize, sequence, and build SCMs in a watershed of interest?							
Where?	Where in the system do SCMs yield the most benefit toward management objectives?							
Why?	What is the most cost-effective strategy that also has the highest likelihood of successful adoption and implementation?							
How?	A multi-objective inclusive solution technique (MOIST) can help address competing management objectives							

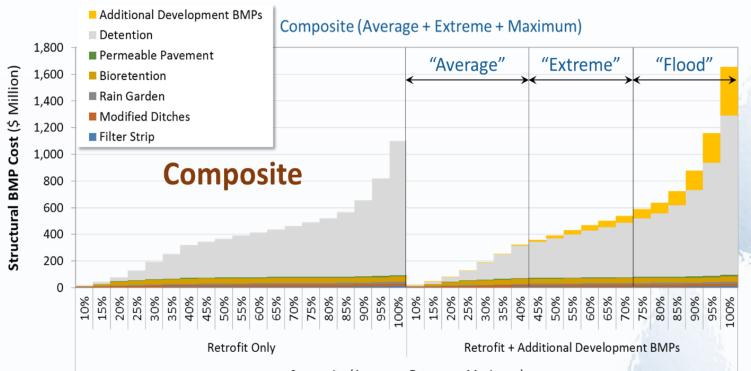
Multi-Objective Inclusive Solution Technique (MOIST)


- Multi-Objective
 - Optimize BMP opportunities using a range storms (1-,2-,5-,10-,25-,50year return periods)
 - Optimize for different desired outcomes and target constituents (e.g., minimize runoff volume, maximize pollutant load reduction)
- Inclusive
 - BMPs considered optimum for managing smaller storms should be part of the solution set for managing larger storms
- Solution Technique
 - Construct a Composite Objective Sequentially Tabulated (COST) curve that inclusively layers optimized BMP capacities from small to large storm.
 - Do a production run to generate CE curve using the new composite curve

Example rainfall distributions and magnitudes

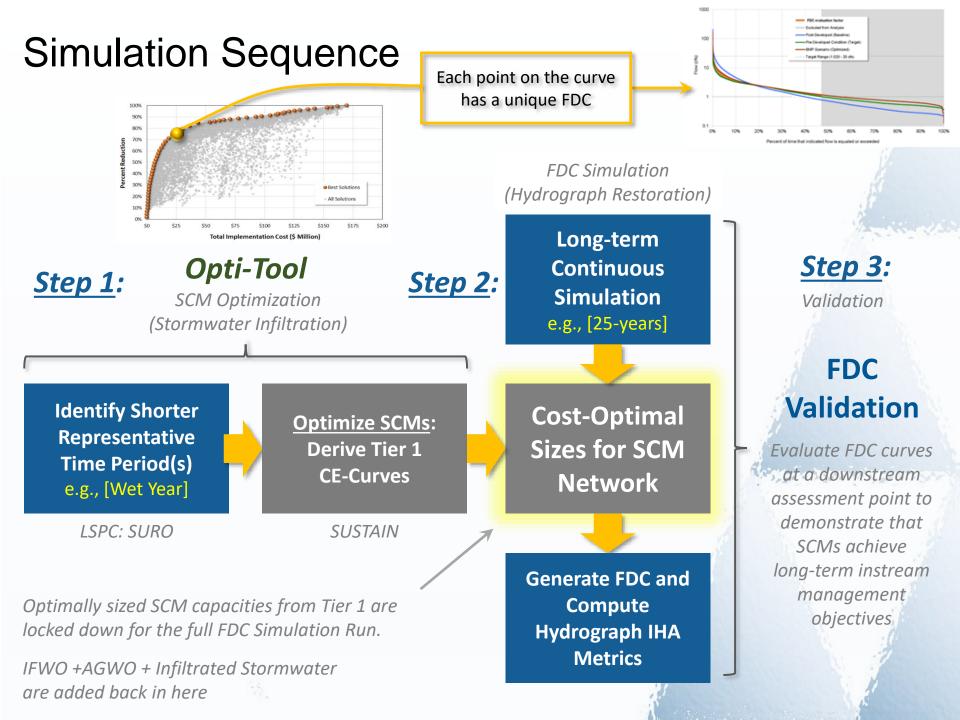
Storm Description		72-hour Rainfall Volume	72-hour Runoff Volume			
1	"Average" Storm ¹	2 inches	1.25 inches			
2	"Extreme" Condition ¹	6.5 inches	6.0 inches			
3	"Flood" Scenario ²	40 inches	39.5 inches			


Representative Hyetal Distribution for this Region


н	ο	u	r

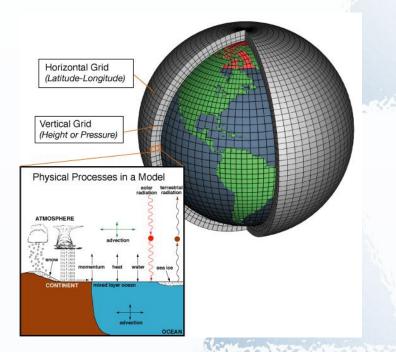
Storm/Description		Return Period	24-hour Rainfall Volume
1	Small	1-yr	2.1
2	SIIIdii	2-yr	2.8
3	Madium	5-yr	3.3
4	Medium	10-yr	3.9
5	Largo	25-yr	5.1
6	Large	50-yr	6.5

Example analysis of "Average," "Extreme" and "Flood" scenarios



Composite Curve

Composite (Average + Extreme + Maximum)


Percentile Interval along Tier 1 CE-Curves (Catchment-Level)

Future Climate

General circulation models (GCMs) – Provide climate change predictions, but output is at relatively coarse temporal and spatial resolutions.

> Most hydrological and water quality models require data at hourly timesteps or finer, and higher spatial resolutions depending on watershed size.

Solution:

Downscale climate data for Taunton watershed using Local Constructed Analogs (LOCA). More info here

Use historical hourly data to identify "analog days" that can be used to disaggregate the future daily precipitation.

Previous work: WMOST

Temperatures were adjusted based on absolute value of change and precipitation was adjusted based on percentage of change. Therefore, if the overall temperature was predicted to increase 2 degrees and precipitation was expected to increase 10%, every hourly record of temperature and precipitation was adjusted by those values, respectively.

Clir	nate Change	6-hour Storm Size (in.)							
Scenario	Model	2-yr	5-yr	10-yr	25-yr	50-yr	100-yr		
Current (Historical)		1.91	2.38	2.77	3.31	3.74	4.18		
A 11	Median (All)	2.07	2.65	3.13	3.84	4.49	5.16		
All	Mean (All)	2.11	2.72	3.25	4.01	4.65	5.35		
	Median (4.5)	2.05	2.59	3.04	3.71	4.27	4.89		
	Mean (4.5)	2.08	2.66	3.16	3.88	4.48	5.13		
	ACCESS1-0	2.07	2.59	3.05	3.76	4.36	5.03		
	CanESM2	2.20	2.93	3.54	4.42	5.15	5.95		
	CCSM4	2.02	2.58	3.00	3.53	3.91	4.28		
RCP 4.5	CESM1-BGC	2.18	2.75	3.31	4.20	5.02	5.97		
RCP 4.5	CMCC-CMS	2.16	2.72	3.12	3.61	3.95	4.27		
	CNRM-CM5	2.49	3.38	4.14	5.24	6.16	7.17		
	GFDL-CM3	1.98	2.41	2.78	3.31	3.73	4.18		
	HadGEM2-CC	1.88	2.49	3.00	3.72	4.31	4.93		
	HadGEM2-ES	1.92	2.38	2.85	3.61	4.29	5.10		
	MIROC5	1.87	2.41	2.84	3.45	3.92	4.42		
	Median (8.5)	2.12	2.73	3.31	4.22	4.97	5.79		
	Mean (8.5)	2.16	2.81	3.38	4.21	4.91	5.68		
	ACCESS1-0	2.04	2.59	3.12	3.99	4.78	5.71		
	CanESM2	2.41	3.31	4.07	5.18	6.11	7.12		
	CCSM4	2.08	2.64	3.09	3.69	4.14	4.60		
RCP 8.5	CESM1-BGC	2.27	2.88	3.47	4.40	5.23	6.19		
NCF 0.3	CMCC-CMS	2.30	3.09	3.69	4.47	5.05	5.64		
	CNRM-CM5	2.54	3.48	4.30	5.52	6.57	7.75		
	GFDL-CM3	1.97	2.46	2.85	3.37	3.77	4.16		
	HadGEM2-CC	2.04	2.72	3.34	4.28	5.10	6.04		
	HadGEM2-ES	2.14	2.71	3.28	4.20	5.04	6.03		
	MIROC5	1.76	2.22	2.56	2.99	3.30	3.60 👫		

Yellow highlighted are instances where the return period storm exceeds the historical 100-yr storm.

Discussion

Holistic Watershed Management for Existing and Future Land use Development Activities: Opportunities for Action for Local Decision Makers Flow metrics to prioritize?

Existing stormwater management practices in the area?

Use of regression equations for bankfull discharge in pilot streams?

Bed material in pilot streams?

Other local information that we're missing?

Next Steps

• Task 6

- TSC Meeting #3
- June 24, 2021

Holistic Watershed Management for Existing and Future Land use Development Activities: Opportunities for Action for Local Decision Makers

Task 6. Model Development

- Model Refinements
 - Convert HSPF to LSPC
 - Adopt hydrology parameters from HSPF model
 - Adopt water quality parameters from Opti-Tool HRU-SWMM model
 - Update Opti-Tool
 - GI SCM groundwater recharge linkage to local surface water
 - FDC evaluation factors for GI SCM optimization
- Model Calibration/Validation
 - Verify the model prediction at the instream gage using the longterm observed continuous flow data
 - Wading River Watershed
 - USGS gage 01109000
 - Baseline (2001-2019)
 - Historic (1972–1990) EIA as calibration parameter?

Task 6. Model Results

- FDC for Baseline Climate Condition (3 Sub-watersheds)
 - Pre-development
 - Historic development (1972–1990)
 - Existing development conditions (2001–2019)
- FDC for Future Climatic Condition (3 Sub-watersheds)
 - Pre-development
 - Historic development (1972–1990)
 - Existing development conditions (2001–2019)
- Quantify Impacts of IC Conversion
 - Critical streamflow regimes / metrics (e.g., flooding, channel scouring, baseflow depletion, etc.)
 - Stormwater runoff pollutant load export
 - Groundwater recharge
 - Evapotranspiration
 - Carbon sequestration and heat loss exchange