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The Beta SDAM for the Great Plains published in September 2022 contained an error in the calculation 

of at least intermittent classifications. This error has now been corrected in the web application. The 

error caused some sites to be identified as at least intermittent that should have been identified as less 

than perennial or needs more information instead.  The less than perennial classification occurs when an 

intermittent or ephemeral classification cannot be made with high confidence, but a perennial 

classification can be ruled out. Out of the 692 site visits used to develop the beta SDAM for the Great 

Plains, 39 were classified as at least intermittent, but 25 of those should have been identified as less 

than perennial. No site visits would have changed from at least intermittent to needs more information 

in the Great Plains dataset, but it is a possible outcome of the method.   

The data analysis steps described in the September 2022 report accurately describe the process 

followed to develop the beta SDAMs for the Great Plains; however, the results for at least intermittent 

are over‐represented, and the occurrences of less than perennial and potential for needs more 

information classifications are wholly missing.    

Applying the corrected calculation of at least intermittent, the final beta method for the Great Plains 

correctly classified 70% of site visits among three classes (perennial vs. intermittent vs. ephemeral), 

while 83% of site visits were classified correctly between two classes (ephemeral vs. at least 

intermittent).  
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Introduction 
Streamflow duration assessment methods (SDAMs) are rapid, field-based methods to determine 
flow duration class at the reach scale. The development of a beta SDAM for the Northern and 
Southern Great Plains regions (hereafter referred to as the GP) followed the conceptual 
framework and process steps presented by Fritz and others (2020) to integrate the three key 
components of an SDAM development study: hydrological data, indicators, and study reaches.  

This supplemental document describes the data collection, data analysis, and evaluation steps 
that resulted in the beta SDAM for the GP. This document is available to inform public review and 
comment on the beta method, as well as serving as a companion to the beta SDAM GP for those 
that are interested in more background on the development of the method and the underlying 
data. For a complete description of the beta SDAM GP protocol, please see the User Manual 
(https://www.epa.gov/system/files/documents/2022-09/beta-sdam-for-the-gp-user-
manual.pdf). The data used to develop the beta SDAM GP can be found here: 
(https://doi.org/10.23719/1527943). For more information on the collaborative effort between 
the U.S. Environmental Protection Agency (EPA) and the U.S. Army Corps of Engineers (Corps) to 
develop regional SDAMs for nationwide coverage, please see: https://www.epa.gov/streamflow-
duration-assessment . 

Streamflow Duration Classes 

Streamflow duration governs important ecosystem functions (such as support for aquatic life, 
sediment transport, and biogeochemical processing rates), and streamflow duration classes are 
often used to guide watershed management decisions, including assessing the applicability of 
water quality standards. Our definitions of streamflow duration classes follow those used by 
Nadeau (2015): 

• Ephemeral reaches flow only in direct response to precipitation. Water typically flows 
only during and/or shortly after large precipitation events, the streambed is always 
above the water table, and stormwater runoff is the primary water source.  

• Intermittent reaches contain sustained flowing water for only part of the year, typically 
during the wet season, where the streambed may be below the water table or where 
the snowmelt from surrounding uplands provides sustained flow. The flow may vary 
greatly with stormwater runoff.  

• Perennial reaches contain flowing water continuously during a year of normal rainfall, 
often with the streambed located below the water table for most of the year. 
Groundwater typically supplies the baseflow for perennial reaches, but the baseflow 
may also be supplemented by stormwater runoff or snowmelt. 

For these definitions, a reach is a section of stream or river along which similar hydrologic 
conditions exist (e.g., discharge, depth, velocity, or sediment transport dynamics) and 
consistent drivers of hydrology are evident (e.g., slope, substrate, geomorphology, or 

https://www.epa.gov/system/files/documents/2022-09/beta-sdam-for-the-gp-user-manual.pdf
https://www.epa.gov/system/files/documents/2022-09/beta-sdam-for-the-gp-user-manual.pdf
https://doi.org/10.23719/1527943
https://www.epa.gov/streamflow-duration-assessment
https://www.epa.gov/streamflow-duration-assessment


3 
 

confinement). A channel is an area that is confined by banks and a bed and contains flowing 
water (continuously or not). 

Overview of the Beta Method for the Great Plains   
The beta SDAM GP uses a small number of indicators to predict the streamflow duration class of 
stream reaches. All indicators are measured during a single field visit. The beta SDAM GP results 
in one of four possible classifications: ephemeral, intermittent, perennial, or at least intermittent. 
The latter category occurs when an intermittent or perennial classification cannot be made with 
high confidence, but an ephemeral classification can be ruled out.  

The tool uses a machine learning model known as random forest (Figure 1). Random forest 
models are increasingly common in the environmental sciences because of their superior 
performance in handling complex relationships among indicators used to predict classifications.  
This approach was previously used to develop regional SDAMs for the Pacific Northwest (PNW; 
Nadeau et al. 2015, Nadeau 2015), Arid West (AW; Mazor et al. 2021a, Mazor et al 2021b), and 
Western Mountains (WM; Mazor et al. 2021c; Mazor et al. 2022). 
 

 
Figure 1. Random forest procedure used to determine a flow classification. 
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Development of the Beta Great Plains SDAM   

The specific data analysis steps described in this document follow the approach used to develop 
and evaluate the beta SDAM WM (Mazor et al. 2022). 

Study Area  
The GP spans the central U.S. from Canada to Mexico and encompasses all or portions of 15 states 
(Figure 2). It includes areas largely dominated by native prairie-type vegetation (tall, short, and 
mixed grass) that generally receive less than 40 inches of precipitation a year. However, 
significant forested areas are also found in the northeast part of the Northern GP region, where 
average yearly rainfall totals are closer to the upper end of the range (30 to 40 inches). The GP 
regions are divided into Northern and Southern GP regions based on the importance of snowmelt 
to river discharge; the boundary between the two approximately follows the line south of which 
mean annual snowfall is less than 0.7 m/y (<2 ft/y; Wohl et al. 2016). Ephemeral and intermittent 
reaches may be found at any position within a watershed but are more common in smaller 
headwaters, where flow accumulation is insufficient to sustain longer-duration flows. Ephemeral 
and intermittent reaches are also generally more common in semi-arid parts of these regions, 
where mean annual precipitation totals are lowest (10-20 inches), and evapotranspiration is 
relatively high.  

There are several large and/or growing metropolitan areas within or partially within the GP, 
including Austin, Chicago, Dallas, Denver, Kansas City, Minneapolis, Milwaukee, and San Antonio. 
Thus, there are places within the GP regions where the need for an SDAM in permitting and 
management programs is particularly high. In addition, development associated with oil and 
natural gas, as well as agricultural uses that may require more and/or modified water sources 
due to climate change, occur across the GP (Vengosh et al. 2014, Perkin et al. 2017). Within a 
portion of the Southern GP region, there is one SDAM currently in use, applicable to New Mexico 
(New Mexico Environment Department [NMED] 2011). 
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Figure 2. Map of SDAM study regions (based on Wohl et al. 2016). The beta SDAM GP applies to the Northern and Southern 

Great Plains as shown. 

Preparation and Candidate Indicators 
At the outset of the project, we assembled a regional steering committee (RSC) consisting of 
technical staff at Corps Districts and EPA Regional Offices in the GP region that manage 
programs where streamflow duration information is often needed (e.g., Clean Water Act 
programs, including permits and enforcement). RSC members were selected based on their 
expertise in both scientific and programmatic elements relevant to streamflow duration 
classification needs. The RSC served several functions in the development process, such as 
reviewing technical products, facilitating connections with local experts, identifying resources 
such as sources of hydrologic data, and providing input on the model selection.  

We identified candidate indicators that were supported by the scientific literature (James et al. 
2022) or used in the New Mexico SDAM (herein referred to as NM method; NMED 2011). In 
addition, we included candidate indicators from the SDAM PNW (Nadeau 2015). Following 
input from the RSC, these candidate indicators were then screened using the criteria described 
by Fritz and others (2020), including:  

Primary criteria 

• Consistency: Does the indicator consistently discriminate among flow duration classes 
(e.g., demonstrated in multiple studies)? 

• Repeatability: Can different practitioners take similar measurements, given sufficient 
training and standardization? 
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• Defensibility: Does the indicator have a rational mechanistic relationship with flow 
duration, as either a response or a driver? 

• Rapidness: Can the indicator be measured during a one-day reach-visit (even if 
subsequent lab analyses are required)? 

• Objectivity: Does the indicator rely on objective (often quantitative) measures, as 
opposed to subjective judgments of practitioners? 

Secondary criteria 
• Robustness: Does human activity complicate indicator measurement or interpretation 

(e.g., poor water quality may affect the expression of some biological indicators)? 
• Practicality: Can practitioners realistically sample the indicator with typical capacity, 

skills, and resources? 

Candidate indicators were included in the study (Table 1) if they: 1) met all the primary criteria; 
2) at least one of the secondary criteria; or 3) were included in the NM method (Level 1 only) to 
facilitate comparison (because not all NM indicators met all primary criteria). Desktop 
geospatial indicators (derived using a geographic information system and applicable spatial 
datasets) that characterize mechanisms affecting flow duration and have been explored in 
other flow duration classification tools (e.g., Eng et al. 2016, Jaeger et al. 2019, Mazor et al. 
2021c) were also included in the analysis. 

Table 1. Candidate indicators evaluated in the present study. Indicators with “NM” in the Origin column were measured following 
the NM method protocol (NMED 2011) and indicators marked with “PNW” were measured following the PNW protocol (Nadeau 
2015); other indicators (OTH) were measured with protocols developed for this study (USEPA 2019) and derived from sources 
resulting from a literature review completed by James et al. (2022) or recommendations from the RSC. Asterisks (*) indicate 
hydrologic indicators that are considered direct measures of water presence.  

Candidate indicator Description Origin 
Geomorphic indicators  

Sinuosity Visual estimate of the curviness of the stream 
channel 

NM 
 

Bankfull width Width of the channel at bankfull height PNW  
Floodplain channel 
dimensions 

Visual estimate of the extent of channel 
entrenchment and connectivity to the floodplain 

NM 

 
Particle size/stream substrate 
sorting 

Visual estimate of the extent of evidence of 
substrate sorting within the channel 

NM 

 Slope Valley slope measured with a handheld 
clinometer 

PNW 
 

In-channel structure/riffle 
pool sequence 

Visual estimate of the diversity and 
distinctiveness of riffles, pools, and other flow-
based microhabitats 

NM 

 Sediment deposition on 
plants and debris 

Visual estimate of the extent of evidence of 
sediment deposition on plants and on debris 
within the floodplain 

NM 



7 
 

Candidate indicator Description Origin 
Hydrologic indicators  

Surface and subsurface flow* Estimate of the percent of the reach-length with 
surface and subsurface flow 

PNW 

 
Isolated pools* Number of pools in the channel without any 

connection to flowing surface water 
PNW 

 
Water in channel* Visual estimate of the extent of surface flow in 

the channel 
NM 

 
Seeps and springs* Presence/absence of springs or seeps within one-

half channel width of the channel 
NM 

 
Hydric soils Presence/absence of hydric soils within the 

channel, measured at up to 3 locations 
NM 

 
Soil moisture and texture* Extent of soil saturation and texture measured at 

three locations in the channel 
OTH 

 
Woody jams Number of woody jams within the channel OTH 

Biological indicators  
Live and dead algal cover Visual estimate of the percent of streambed 

covered by live or dead algal growth 
OTH 

 
Filamentous algal abundance Estimate of the overall abundance of filamentous 

algae within the channel 
NM 

 
Stream shading Percent shade-providing cover above the 

streambed measured with a densiometer at 
three locations 

OTH 

 
Hydrophytic plant species Number of OBL or FACW-rated plants (as listed in 

Lichvar et al. 2016) growing within the channel or 
one half-channel width from the channel 

PNW 

 
Fish Estimate of the overall abundance of fish (other 

than non-native mosquitofish) in the channel.  
NM 

 
Aquatic invertebrates Abundance and richness of aquatic invertebrate 

families collected from the channel 
PNW 

 
Aquatic invertebrates Estimate of the overall abundance of aquatic 

invertebrates within the channel 
NM 

 
Amphibians Estimate of the overall abundance of amphibians 

within the channel 
NM 

 
Mosses and liverworts Visual estimate of the percent of streambed and 

banks covered by live or dead bryophytes or 
liverworts 

OTH 

 
Differences in vegetation 
(riparian corridor) 

Visual estimate of the distinctiveness of 
vegetation in the riparian corridor compared to 
surrounding upland vegetation 

NM 

 
Absence of upland rooted 
plants in the streambed 

Visual estimate of the extent of upland rooted 
plants growing within the streambed 

NM 
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Candidate indicator Description Origin 
 Presence of iron-oxidizing 

fungi or bacteria 
Presence of oily sheens indicative of iron-
oxidizing fungi or bacteria within the assessment 
reach 

NM 

 Presence of aquatic or semi-
aquatic snakes 

Presence of aquatic or semi-aquatic snakes (e.g., 
most garter snake species) in the channel 

PNW 

Geospatial indicators 
 Elevation Elevation above mean sea level OTH 

 Long-term normal 
precipitation and 
temperature 

30-y normal mean annual and monthly 
precipitation, and 30-y normal mean, maximum, 
and minimum annual temperature (PRISM 
climate data; Hart and Bell 2015). 

OTH 

 Strata (location) The four subregions or ‘strata’ into which the 
Northern and Southern Great Plains have been 
subdivided: Northern Prairie, Central Prairie, 
Upper Midwest, and Southern Plains 

OTH 

 Baseflow Index (BFI) The ratio of baseflow to total flow, expressed as 
a percentage and provided as a 1-kilometer 
raster grid for the conterminous U.S. (Wolock, 
2003) 

OTH 

 

Candidate Reach Identification and Data Collection 
We had two objectives in selecting candidate reaches for this study: first, to include a sufficient 
number of reaches in each streamflow duration class to characterize variability in indicator 
measurements; and second, to select reaches representing the range of key natural and 
disturbance gradients within the GP to support applicability of the method across anticipated 
conditions. To support our goal of geographic representativeness, we subdivided the Northern 
GP into 3 subregions or strata, based on EPA Level II Ecoregion boundaries (Omernik 1995). This 
resulted in 4 strata: Central Prairie, Northern Prairie, Upper Midwest, and Southern Great 
Plains. We aimed to select 290 stream-reaches (one assessed location per reach) with equal 
representation of perennial, intermittent, and ephemeral flow duration classes among and 
within the four GP strata (Figure 3). 
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To screen reaches for use in method 
development, we first compiled a list 
of 3566 candidate study reaches 
based on existing hydrologic data 
records (e.g., U.S. Geological Survey 
(USGS) stream gages, water presence 
loggers, wildlife cameras, field 
photos), published studies, and 
interviews with local experts familiar 
with the specific reach’s hydrology. 
Most of these reaches (2945) were 
derived from the database of stream 
gages operated by the USGS and 
2298 (78%) of them were perennial. 
(Actual streamflow duration class 
was determined by applying the 
flowchart in Figure 4, which was 
informed by existing definitions 
(Hedman and Osterkamp 1982, 
Hewlett 1982).) Consequently, other 
sources were required to identify 
candidate ephemeral and 
intermittent reaches. Another 621 
candidate study reaches were 
identified from published studies 
or consultation with local experts. Whenever possible, multiple sources of hydrologic 
information were used to confirm actual streamflow classifications. In the resulting set of 
candidate reaches, 7.5% were determined to be ephemeral, 26.1% were intermittent, and 
66.3% were perennial. 

Reaches were prioritized for study inclusion based on being accessible (e.g., on public property 
or with landowner permission), being wadable, and the number and type of data sources 
available to determine actual streamflow duration classification. Reaches where streamflow 
duration class could be determined based on multiple data sources (e.g., water presence 
loggers and expert knowledge) were categorized as “preferred” for study inclusion. Reaches 
classified based solely on interpretation of USGS stream gage data without consultation of a 
local expert were categorized as “USGS gage” reaches. Reaches classified through local 
expertise alone were categorized as “acceptable” and included in the study to fill gaps in study 
strata where an insufficient number of “preferred” and “USGS gage” reaches classified as 
intermittent or ephemeral could be identified.  

 

Figure 3: The four GP sub-strata; study reaches shown are those used to 
calibrate the beta SDAM GP. 
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Figure 4. Flowchart used to determine actual streamflow duration class of reaches based on continuous measures of water 
presence (e.g., USGS streamgages). DOR: days of record. Zyear: Average number of dry days per year. Myear: Average length of 

longest continuous wet period per year, in days. For USGS gages, at least 20 years of data were analyzed whenever possible 
(Kelso and Fritz 2021).  

Of the 3566 candidate reaches, 293 study reaches were sampled from November 2019 to June 
2021. These study reaches were parsed into ‘instrumented’ and ‘single-visit’ reaches1. 
Instrumented reaches (183) were visited multiple times (up to four), and each had at least one 
Stream Temperature, Intermittence, and Conductance (STIC; Chapin et al. 2014) logger 
deployed, with 10% of instrumented reaches having duplicate data loggers. Instrumented 
reaches generally had fewer existing lines of evidence to determine actual streamflow duration 
classification before sampling; therefore, post-sampling reach classifications were reviewed in 
light of the STIC logger data and hydrology indicator data that were direct measures of water 
presence collected during each visit. For further details on STIC data loggers and their 
verification/calibration, deployment, and data retrieval, see Schumacher and Fritz (2019). 
Single-visit reaches (110) were visited once (with a 10% resample) and did not have loggers 
deployed. Because actual streamflow duration classification of most single-visit reaches was 
determined using existing data, these reaches generally had multiple direct flow duration data 
sources. Ultimately, due to data loss from STIC loggers and other factors, actual streamflow 
duration class at 42 reaches (35 instrumented and seven single-visit reaches) could not be 

 
1 These reaches were termed ‘baseline’ and ‘validation’, respectively, in prior beta SDAMs but have been renamed 
for clarity. 
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determined with confidence and were excluded from analysis used to develop the beta SDAM 
GP. Of the 251 study reaches used to develop the beta SDAM GP, 71 were ephemeral, 100 were 
intermittent, and 80 were perennial (Table 2). 

Table 2. Distribution of reaches used to develop the beta SDAM GP. Instrumented reaches were visited up to four times and had 
Stream Temperature, Intermittence, and Conductance loggers installed and single-visit reaches were visited once (rarely, twice) 
and did not have loggers installed. 

 Single-Visit  Instrumented  
Class Gaged Preferred  Gaged Preferred Acceptable Total 
Ephemeral 14 14  6 7 30 71 
-Northern Prairie 3 6  0 0 9 10 
-Upper Midwest 0 2  0 1 2 7 
-Central Prairie 7 4  1 3 13 6 
-Southern Plains 4 2  5 3 6 8 
Intermittent 13 26  10 15 36 100 
-Northern Prairie 4 3  4 2 6 19 
-Upper Midwest 1 13  1 1 23 39 
-Central Prairie 2 7  2 8 5 24 
-Southern Plains 6 3  3 4 2 18 
Perennial 32 4  23 9 12 80 
-Northern Prairie 9 0  6 0 1 16 
-Upper Midwest 8 1  5 6 9 29 
-Central Prairie 8 1  7 1 1 18 
-Southern Plains 7 2  5 2 1 17 

 

During each field visit to a study reach the suite of candidate indicators (Table 1) were 
measured following the development protocol (USEPA 2019). This compilation of indicators 
from a single field visit constitutes one reach sample (or observation) in terms of the analyses 
described within this data analysis supplement. Surrounding land use may affect or disturb 
streamflow duration indicators without substantially shifting flow duration at reaches (e.g., 
changes in water quality). Up to two predominant land use categories within a 100-m radius of 
each study reach were noted on each field visit. If “urban” or “agriculture” were the identified 
land use category the sample was considered disturbed; otherwise, the sample was considered 
not disturbed for comparisons of beta SDAM GP performance. 

Data analysis 
Metric calculation 
Candidate indicator data were used to create 95 candidate metrics, of which 52 were biological, 
11 were geomorphological, ten were hydrologic (eight directly measured water presence, and 
two were indirect measurements), and 22 were geospatial (Table 3).   
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Table 3. Candidate metrics evaluated for the development of the beta SDAM GP. Please see Appendix A for full definitions of Candidate metrics. Asterisks (*) indicate hydrologic metrics that directly 
measure the presence of water. Abbreviations in Candidate metric names include – EPT: Ephemeroptera, Plecoptera, and Trichoptera insect orders. GOLD: Gastropoda, Oligochaeta, and Diptera 
invertebrate groups. OCH: Odonata, Coleoptera, and Heteroptera insect orders. For Type the following categories apply – Ord: Ordinal metrics. Cat: Categorical metrics. Bin: Binary metrics. Con: 
Continuous metrics. The following fields provide the screening criteria – PctDom: Percent of reach samples with the most common value (typically zero). Min: minimum value. Max = maximum value. 
Range: Maximum possible value minus minimum possible value for the candidate metric. PvIvE: F-statistic from a comparison of mean values at perennial, intermittent, and ephemeral reaches. 
EvALI: Absolute t-statistic from a comparison of mean values at ephemeral and at least intermittent reaches. PvNP: Absolute t-statistic from a comparison of mean values at perennial and non-
perennial reaches. PvIWet: Absolute t-statistic from a comparison of mean values at flowing intermittent and perennial reaches. EvIdry: Absolute t-statistic from a comparison of mean values at non-
flowing intermittent and ephemeral reaches. rf_MDA: Variable importance from a random forest model, measured as mean decrease in accuracy. Screened: Indicates if the metric passed or failed 
screening criteria in Table 5. NA = not applicable 

Candidate metrics Group Type PctDom Min Max Range PvIvE EvNE PvNP PvIwet EvIdry rf_MDA Screened 

ai_present Bio Bin 64% 0 1 1 267.06 21.08 19.12 4.24 3.99 0.01 Pass 

Algae_score Bio Ord 48% 0 3 3 126.58 15.63 12.90 4.95 3.27 0.01 Pass 

algdead_cover_score Bio Ord 89% 0 3 3 11.17 4.83 3.49 2.35 1.29 0.00 Pass 

algdead_noupstream_cover_score Bio Ord 89% 0 3 3 11.52 4.73 3.58 2.56 1.29 0.00 Pass 

alglive_cover_score Bio Ord 52% 0 4 4 102.24 14.77 11.35 4.08 3.14 0.01 Pass 

alglivedead_cover_score Bio Ord 50% 0 4 4 106.29 15.09 11.50 4.21 3.58 0.01 Pass 

amphib_score Bio Bin 83% 0 1 1 17.82 8.11 2.43 0.62 2.11 0.00 Pass 

BMI_score Bio Ord 43% 0 3 3 292.33 22.08 21.59 7.36 3.50 0.01 Pass 

DifferencesInVegetation_score Bio Ord 27% 0 3 3 86.72 12.36 9.71 3.61 4.34 0.00 Pass 

EPT_abundance Bio Con 57% 0 45 45 117.44 13.85 11.26 7.84 2.15 0.01 Pass 

EPT_relabd Bio Con 57% 0 1 1 125.81 15.40 12.33 7.38 1.73 0.01 Pass 

EPT_reltaxa Bio Con 57% 0 1 1 141.40 16.00 13.23 7.61 1.95 0.01 Pass 

EPT_taxa Bio Con 57% 0 7 7 172.21 15.77 14.07 9.45 2.01 0.01 Pass 

Fish_score Bio Ord 65% 0 3 3 116.37 14.52 12.18 6.49 0.03 0.00 Pass 

fishabund_score2 Bio Ord 67% 0 3 3 116.06 14.39 12.12 6.43 1.87 0.00 Pass 

frogvoc_score Bio Bin 85% 0 1 1 10.63 5.90 1.80 1.01 2.02 0.00 Pass 

GOLD_abundance Bio Con 51% 0 29 29 37.81 10.88 5.32 0.85 2.48 0.00 Pass 

GOLD_relabd Bio Con 51% 0 1 1 30.34 9.27 2.77 2.63 1.29 0.00 Pass 

GOLD_reltaxa Bio Con 51% 0 1 1 39.55 10.15 4.37 1.90 1.57 0.00 Pass 

GOLD_taxa Bio Con 51% 0 5 5 75.47 13.95 8.56 2.18 2.54 0.00 Pass 

GOLDOCH_relabd Bio Con 42% 0 1 1 54.00 11.44 3.20 2.99 3.64 0.01 Pass 

GOLDOCH_reltaxa Bio Con 42% 0 1 1 76.36 13.53 5.28 2.25 3.98 0.01 Pass 

hydrophytes_present Bio Ord 22% 0 8 8 116.68 15.60 10.60 3.77 5.15 0.00 Pass 

hydrophytes_present_any Bio Bin 78% 0 1 1 116.21 11.87 10.45 2.02 5.71 0.00 Pass 

hydrophytes_present_noflag Bio Ord 22% 0 8 8 117.79 15.88 10.53 3.59 5.26 0.01 Pass 
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Candidate metrics Group Type PctDom Min Max Range PvIvE EvNE PvNP PvIwet EvIdry rf_MDA Screened 

iofb_score Bio Bin 89% 0 1.5 1.5 4.75 3.65 0.81 1.52 0.91 0.00 Pass 

liverwort_cover_score Bio Ord 97% 0 3 3 5.35 2.40 2.44 2.24 0.55 0.00 Fail 

mayfly_abundance Bio Con 64% 0 30 30 83.84 12.38 9.67 6.48 1.98 0.00 Pass 

mayfly_gt6 Bio Bin 81% 0 1 1 63.01 11.22 8.54 5.70 2.08 0.00 Pass 

moss_cover_score Bio Ord 92% 0 3 3 18.09 6.27 4.47 3.18 1.27 0.00 Pass 

Noninsect_abundance Bio Con 61% 0 30 30 31.19 10.38 4.58 0.64 2.58 0.00 Pass 

Noninsect_relabund Bio Con 61% 0 1 1 23.53 8.35 2.48 1.79 1.87 0.00 Pass 

Noninsect_reltaxa Bio Con 61% 0 1 1 29.39 9.00 3.36 1.45 1.97 0.00 Pass 

Noninsect_taxa Bio Con 61% 0 4 4 50.62 12.11 6.61 1.64 2.57 0.00 Pass 

OCH_abundance Bio Con 58% 0 29 29 17.45 6.94 1.97 0.47 3.97 0.00 Pass 

OCH_relabd Bio Con 58% 0 1 1 18.54 6.81 1.46 0.99 3.84 0.00 Pass 

OCH_reltaxa Bio Con 58% 0 1 1 31.55 9.29 2.78 0.91 4.05 0.00 Pass 

OCH_taxa Bio Con 58% 0 6 6 39.62 11.03 4.90 0.74 4.14 0.00 Pass 

PctShading Bio Con 32% 0 1 1 5.32 2.42 1.04 2.73 1.12 0.00 Pass 

peren_present Bio Bin 72% 0 1 1 133.73 12.37 13.62 8.83 0.49 0.00 Pass 

perennial_abundance Bio Con 72% 0 32 32 53.94 8.29 7.82 5.86 0.09 0.00 Pass 

perennial_live_abundance Bio Con 72% 0 32 32 52.84 8.23 7.75 5.79 0.09 0.00 Pass 

perennial_taxa Bio Con 72% 0 5 5 98.70 10.06 10.80 8.02 0.27 0.00 Pass 

Richness Bio Con 36% 0 18 18 189.94 19.03 15.32 7.04 3.81 0.02 Pass 

ripariancorr_score Bio Bin 70% 0 1 1 39.98 8.12 4.75 0.53 3.06 0.00 Pass 

snake_score Bio Bin 98% 0 1 1 3.26 2.30 1.96 1.88 1.09 0.00 Fail 

TotalAbundance Bio Con 36% 0 86 86 121.21 16.60 11.51 5.16 3.89 0.02 Pass 

turt_score Bio Bin 95% 0 1 1 7.06 4.30 2.71 1.34 0.55 0.00 Fail 

UplandRootedPlants_score Bio Ord 57% 0 3 3 180.91 15.56 16.32 4.54 3.13 0.01 Pass 

vert_score Bio Bin 71% 0 1 1 32.79 10.33 3.80 0.58 3.03 0.00 Pass 

vert_sumscore Bio Ord 79% 0 3 3 22.05 8.68 3.68 0.69 2.27 0.00 Pass 

vertvoc_sumscore Bio Bin 71% 0 4 4 27.02 9.57 3.67 0.03 2.74 0.00 Pass 

BankWidthMean Geomorph Con 2% 0.4 68.3 67.9 24.76 4.16 6.63 4.36 0.79 0.02 Pass 

ChannelDimensions_score Geomorph Ord 57% 0 3 3 3.25 1.40 1.37 1.13 2.40 0.00 Pass 

erosion_score Geomorph Bin 89% 0 1 1 0.18 0.53 0.01 0.56 0.19 0.00 Fail 

floodplain_score Geomorph Bin 66% 0 1 1 2.37 1.39 0.87 1.41 0.79 0.00 Pass 

RifflePoolSeq_score Geomorph Ord 30% 0 3 3 40.49 7.71 7.69 3.27 0.69 0.00 Pass 

SedimentOnPlantsDebris_score Geomorph Ord 29% 0 1.5 1.5 30.88 7.25 5.91 0.80 0.41 0.00 Pass 
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Candidate metrics Group Type PctDom Min Max Range PvIvE EvNE PvNP PvIwet EvIdry rf_MDA Screened 

Sinuosity_score Geomorph Ord 49% 0 3 3 15.96 6.01 1.40 1.05 4.16 0.00 Pass 

Slope Geomorph Ord 40% 0 20 20 4.57 1.77 3.70 1.96 0.32 0.00 Pass 

slope_gt10.5 Geomorph Bin 98% 0 1 1 3.17 0.51 3.03 2.26 0.78 0.00 Fail 

slope_gt16 Geomorph Bin 100% 0 1 1 1.20 1.00 1.00 0.00 1.00 0.00 Fail 

SubstrateSorting_score Geomorph Ord 33% 0 3 3 77.71 8.20 13.21 6.77 1.35 0.01 Pass 

BFI GIS Con 5% 7 76 69 38.44 4.19 8.47 6.30 0.21 0.01 Pass 

Elev_m GIS Con 3% 13 2643 2630 3.77 2.41 0.42 2.27 0.77 0.01 Pass 

MeanSnowPersistence_01 GIS Con 1% 0.000 52.789 52.789 34.02 8.76 5.23 2.18 4.83 0.01 Pass 

MeanSnowPersistence_05 GIS Con 1% 0.096 50.826 50.730 33.88 8.56 5.33 2.20 4.84 0.01 Pass 

MeanSnowPersistence_10 GIS Con 1% 0.074 51.522 51.448 34.02 8.57 5.34 2.23 4.71 0.01 Pass 

ppt GIS Con 1% 287.21 1056.46 769.25 12.69 5.03 2.98 0.12 1.57 0.01 Pass 

ppt.m01 GIS Con 1% 6.33 70.31 63.97 6.84 1.75 3.63 2.30 1.35 0.01 Pass 

ppt.m02 GIS Con 1% 7.44 69.55 62.11 5.72 2.69 2.94 1.10 0.11 0.01 Pass 

ppt.m03 GIS Con 1% 9.38 90.06 80.68 3.52 1.73 2.61 0.97 0.89 0.01 Pass 

ppt.m04 GIS Con 1% 9.77 103.05 93.29 13.89 5.77 3.08 0.13 1.72 0.01 Pass 

ppt.m05 GIS Con 1% 25.45 152.61 127.15 7.95 4.07 1.83 1.00 1.22 0.01 Pass 

ppt.m06 GIS Con 1% 28.57 146.24 117.68 21.84 7.01 1.41 1.82 3.68 0.01 Pass 

ppt.m07 GIS Con 1% 25.22 123.55 98.33 19.77 6.77 1.49 1.08 4.24 0.01 Pass 

ppt.m08 GIS Con 1% 16.13 121.45 105.32 14.81 5.96 0.71 1.77 3.32 0.02 Pass 

ppt.m09 GIS Con 1% 16.68 130.63 113.95 11.64 4.66 3.01 0.48 1.56 0.01 Pass 

ppt.m10 GIS Con 1% 18.72 110.64 91.91 7.88 2.93 3.51 1.44 0.11 0.01 Pass 

ppt.m11 GIS Con 1% 9.53 76.10 66.57 8.14 2.74 3.74 1.90 0.43 0.01 Pass 

ppt.m12 GIS Con 1% 7.10 75.11 68.01 5.82 2.21 3.18 1.66 0.64 0.01 Pass 

Strata GIS Cat NA NA NA NA NA NA NA NA NA NA Pass 

tmax GIS Con 2% 9.13 28.66 19.53 28.69 7.71 3.70 0.80 5.51 0.01 Pass 

tmean GIS Con 2% 3.09 22.68 19.59 20.48 6.32 3.06 0.73 5.11 0.01 Pass 

tmin GIS Con 2% -2.98 17.26 20.24 12.34 4.77 2.28 0.64 4.43 0.01 Pass 

IsolatedPools_number * 
H20 

(Direct) Ord 88% 0 20 20 8.20 1.17 6.00 2.81 2.50 0.00 Pass 

SoilMoist_MaxScore * 
H20 

(Direct) Ord 79% 0 2 2 180.34 13.46 12.08 0.00 6.45 0.01 Pass 

SoilMoist_MeanScore * 
H20 

(Direct) Ord 79% 0 2 2 200.30 14.19 12.46 0.00 6.88 0.01 Pass 

springs_score * 
H20 

(Direct) Bin 94% 0 3 3 4.29 3.63 0.44 1.45 0.19 0.00 Pass 
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Candidate metrics Group Type PctDom Min Max Range PvIvE EvNE PvNP PvIwet EvIdry rf_MDA Screened 

SurfaceFlow_pct * 
H20 

(Direct) Ord 56% 0 100 100 465.35 32.48 23.62 3.89 3.00 0.04 Pass 

SurfaceSubsurfaceFlow_pct * 
H20 

(Direct) Ord 60% 0 100 100 456.57 32.26 22.38 2.19 3.05 0.03 Pass 

WaterInChannel_score * 
H20 

(Direct) Ord 46% 0 6 6 531.00 31.42 24.02 6.28 6.11 0.04 Pass 

HydricSoils_score  
H20 

(Indirect) Bin 78% 0 3 3 90.55 10.93 6.47 0.13 7.76 0.00 Pass 

WoodyJams_number 
H20 

(Indirect) Ord 85% 0 100 100 1.83 1.56 1.50 2.45 1.19 0.00 Pass 
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Metric Screening 
As an initial data exploration step, we visualized the relationships between actual streamflow 
duration class (hereafter “flow class”) and indicators by ordinating all 95 metrics for all samples 
in the dataset in a nonmetric multidimensional scaling using Gowers’ distance (Gower 1971). 
Convex hulls were drawn around each flow class to help visualize their distributions in 
ordination space. The ordination of all candidate metrics for Northern and Southern GP 
samples showed intermittent reaches overlapped with ephemeral and perennial reaches and 
there was more separation between ephemeral and perennial reaches (Figure 5). Axis 1 tended 
to separate reaches with flowing and dry conditions at the time of sample collection. 

 
Figure 5. Beta SDAM GP candidate metric ordination. 

Next, candidate metrics were evaluated using criteria for inclusion in the beta SDAM GP (Table 
4):  

• Distribution statistic criterion: calculated as percent dominance of the most common 
value (which was typically zero); all metrics had to meet this criterion. 

• Criteria measuring the responsiveness of metrics (i.e., ability to discriminate across flow 
classes) included: 
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o A set of statistical comparisons of mean values at different subsets of reaches 
(e.g., t-statistic from a comparison of metric values at perennial and non-
perennial reaches), as has been used in other studies (Hawkins et al. 2010, Cao 
and Hawkins 2011, Mazor et al. 2016). 

o A responsiveness statistic based on variable importance (specifically, mean 
decrease in accuracy) from a random forest model to predict streamflow 
duration class from all candidate metrics; the model was calibrated using the 
default option from the randomForest function in the randomForest package in R 
(Liaw and Wiener 2002). 

Candidate metrics had to meet at least one responsiveness criterion, in addition to the 
distribution criterion, to be considered in further analyses. An exception was Strata, which is 
the metric representing the four strata among which the study reaches were geographically 
distributed; therefore, it was included in further analyses. A total of 89 of the 95 candidate 
metrics were considered as screened metrics. Of the six metrics that failed, all but one 
(erosion_scored) failed due to Percent Dominance (PctDom) scores greater than 95%. Note that 
this evaluation was carried out using the testing dataset described in the next section.  

Table 4. Metric screening criteria. Metrics had to meet the distribution criterion and at least one responsiveness criterion to be 
considered screened for further analysis. 

Criterion Definition 
Distribution criterion 
% dominance of most 
common value 

<95% Frequency of most common value (typically, zero) in the 
development data set 

Responsiveness criteria 
PvIvE F>2 F-statistic in a comparison of values at perennial versus 

intermittent versus ephemeral reaches 
EvALI t>2 t-statistic in a comparison of values at ephemeral versus at least 

intermittent reaches 
PvNP t>2 t-statistic in a comparison of values at perennial versus non-

perennial reaches 
PvIwet t>2 t-statistic in a comparison of values at perennial versus flowing 

intermittent reaches 
EvIdry t>2 t-statistic in a comparison of values at ephemeral versus dry 

intermittent reaches 
rf_MDA Top 

quartile 
Mean decrease accuracy (MDA) in a random forest model to 
predict perennial, intermittent, or ephemeral streamflow 
duration class 

 

As in the development of previous SDAMs, direct measures of water were excluded from 
further analysis. Metrics that directly measure water (e.g., soil moisture, number of isolated 
pools, water in channel) can greatly increase performance. However, such metrics introduce 
circularity (because water presence was used to confirm and update actual streamflow 
duration classes in the development data set) and may degrade the ability of the SDAM to 
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perform well during atypical conditions, such as drought. See Mazor et al. (2021b) for a 
discussion of the implications of including direct measures of water presence as an indicator in 
SDAMs. 

Data Preparation  
Prior to method development, a portion of the data was withheld for use in final model testing. 
Samples from 20% of the study reaches, balanced by Class and Strata, were withheld into a 
“test” dataset. These samples were used to inform the final model selection and refinement, by 
evaluating the model on novel reaches. Samples from the remaining 80% of the reaches were 
used to develop (or “train”) the model and are referred to hereafter as the training dataset. 

Repeat reach visits 
Of the 251 reaches included in the GP dataset, each was visited between one and four times, 
yielding a total of 692 samples. Figure 6 shows the distribution of repeat reach visits. 

 

 
Figure 6. Distribution of number of visits across the 251 study reaches. Numbers inside of bars are the number of study sites with 

1, 2, 3 or 4 visits.  

To minimize bias, oversampling was performed on the training dataset (Figure 7). Oversampling 
is a common preprocessing step that serves to give under-represented classes more visibility in 
the data (Mohammed et al. 2020).  

Number of visits 
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Figure 7.Oversampling process used for training dataset. x is a hypothetical candidate indicator 

Oversampling was performed on the training dataset only (no manipulations were conducted 
on the test dataset) and was included the following steps: 

• If a reach was sampled one time, its sample was repeated four times. 
• If a reach was sampled twice, each sample was repeated two times. 
• If a reach was sampled three or four times, the samples were left as-is. 

The result of the oversampling process was that each study reach had three or four samples 
used in the analysis process for method development and the distribution of flow duration 
classes was preserved from the original training dataset to the oversampled training dataset, 
which also matched well to the distribution of flow duration classes within the testing dataset 
(Figure 8). Therefore, the augmented (oversampled) training data with 822 samples were used 
in the next step of the method development analysis process to select screened metrics.  
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Figure 8: Distribution of ephemeral (E), intermittent (I), and perennial (P) classes in the (A) training dataset before oversampling, 
(B) training dataset after oversampling, and the (C) testing dataset. Shown for each bar is the number of samples for a 

streamflow duration class and the percent of samples within the datasets. A balanced distribution between classes is important 
to mitigate against bias and improve model accuracy. 

Metric selection 
The screened metrics were reduced to a final set of metrics for the beta SDAM GP based on 
their importance in random forest models using the Recursive Feature Elimination (RFE) 
function in the R caret package (Kuhn 2020). Briefly, RFE is a form of stepwise selection where 
complex models (i.e., those based on many metrics) are calibrated, and simpler models are 
considered incrementally by eliminating the least important metrics. Here, the most complex 
model was first considered. Then, the five least important metrics were eliminated based on 
their relative performance in the random forest model. This process was iterated until a 20-
metric model was identified, after which only one variable was eliminated in each successive 
step. The best performing model (highest accuracy in predicting true streamflow duration class) 
was identified. Then, the simplest model (i.e., the one with the fewest metrics) with accuracy 
within 1% of the model with the best accuracy was selected to identify the final set of metrics. 
If the best-performing model selected by this approach had more than 20 metrics, the 20-
metric model was selected. For this analysis, accuracy on the training dataset was measured 
with Cohen’s Kappa statistic—a measure of accuracy that accounts for uneven distribution 
among the three streamflow duration classes. Note that the Kappa statistic varies from 0 to 1, 
where 0 equals agreement equivalent to chance and 1 equates to perfect agreement. Due to 
the use of random forest models, the Out-of-Bag (OOB) error rate is provided. This means that 
the prediction error measure for the model is computed through bootstrap or bagging, where 
subsampling with replacement creates a set of training samples for the model to learn from and 
the OOB error is the mean prediction error on each training sample (James et al. 2013). 

This modeling process (including RFE) was applied to the dataset to produce 10 models: 

• The entire Great Plains (Northern and Southern Great Plains) dataset (unstratified 
model set) 

• Datasets for each stratum (stratified model sets): Central Prairie, Northern Prairie, 
Southern Plains, and Upper Midwest (Figure 3) 

A B C 
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There are advantages and disadvantages to including geospatial metrics in an SDAM. Geospatial 
metrics may improve SDAM performance but would require GIS analysis in the application of 
the resulting method. See Mazor et al. (2021b) for a discussion of the implications of including 
geospatial metrics in SDAMs. 

The 10 models were compared to determine the degree of improved performance by the 
inclusion of GIS metrics and strata-specific models. Model design characteristics and optimal 
number of metrics selected by RFE are shown in Table 5, and the selected metrics for each 
model are shown in Figure 9. 

Table 5. Design characteristics of the 10 models. GIS: included geospatial metrics. # samples: number of samples used in model 
training and testing. RFE OOB error rate: out-of-bag (OOB) error rate of the best model produced by recursive feature 
elimination. 

Model set Stratum 
# samples 
(training) 

# samples 
(testing) 

# metrics 
eligible 

# metrics 
chosen 

RFE OOB error 
rate 

Unstratified models 
Unstratified Entire Great Plains 

822 121 61 11 0.13 

Unstratified GIS Entire Great Plains 
822 121 82 6 0.03 

Models stratified by region 
Stratified Northern Prairie 174 18 61 20 0.20 
Stratified Southern Plains 180 29 61 9 0.10 
Stratified Upper Midwest 237 38 61 7 0.17 
Stratified Central Prairie 231 36 61 20 0.10 
Stratified GIS Northern Prairie 174 18 82 11 0.02 
Stratified GIS Southern Plains 180 29 82 18 0.07 
Stratified GIS Upper Midwest 237 38 82 13 0.01 
Stratified GIS Central Prairie 231 36 82 20 0.02 

 

Biological metrics, particularly those based on aquatic invertebrates, were among the most 
widely selected metrics across model sets (Figure 9). Among non-biological metrics, mean 
bankfull width was the only frequently selected geomorphological metric.   
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Figure 9. Screened metrics (left) selected by RFE for each model set (bottom). White tiles indicate that a screened metric was 
ineligible for selection in that model set (e.g., Elev_m was ineligible for models that did not allow GIS metrics). X-axis labels refer 

to model sets described in Table 6. Y-axis labels refer to screened metrics described in Table 4 and Appendix A. 

Shading indicates if 0, 1, 2, 
3 or all 4 strata included a 
candidate metric in the 
model. The unstratified 
models include all 4 strata. 
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Preliminary model calibration and performance assessment 
Random forest models were fit for each of the 10 models using the randomForest function in 
the randomForest package in R (Liaw and Wiener 2002) using default parameters, except that 
the number of trees was set to 1500 instead of the default 500. 

Model performance evaluation focused on two aspects: accuracy and repeatability (Table 7 and 
Figure 8). Accuracy was assessed by calculating the same comparisons used to evaluate metric 
responsiveness during the metric screening phase (e.g., ephemeral versus at least intermittent 
reaches [EvALI], perennial versus wet intermittent reaches [PvIwet], etc.; Table 5). Accuracy of a 
model’s ability to correctly distinguish among ephemeral, intermittent, and perennial 
streamflow classes was assessed on both the training and testing datasets independently. 
Training and testing measures were compared against each other to see if models validated 
poorly (training dataset accuracy substantially higher than testing dataset accuracy), suggesting 
that models may be overfit for the training reaches and not generally predictive for streamflow 
duration classification. The performance of unstratified models was evaluated for individual 
strata by examining results for reaches within the four strata separately. 

Repeatability, or precision, was assessed using data from the 158 reaches that were resampled 
(Figure 6) and was calculated as the percent of reaches where model classifications from 
repeated samples at the same reach were consistent (regardless of classification accuracy). Due 
to the limited amount of data, repeatability was only assessed for the entire GP and not within 
each stratum. 

Along with the 10 models, the classification accuracy of existing SDAMs (models) for the PNW 
(Nadeau 2015), NM (NMED 2011), and beta AW (Mazor et al. 2021a) as applied to the GP 
dataset was also compared (Table 6 and Figure 10). 

Table 6. Performance evaluation of the 10 RF model options developed for the GP and 3 existing SDAMs. PvIvE: Percent of reach 
samples classified correctly as perennial, intermittent, or ephemeral. EvALI: Percent of reach samples classified correctly as 
ephemeral or at least intermittent. PvNP: Percent of reach samples classified correctly as perennial or non-perennial. PvIwet: 
Percent of flowing reach samples classified correctly as perennial or intermittent. IvEdry: Percent of dry reach samples correctly 
classified as intermittent or ephemeral. Train: Result for training data. Test: Result for testing data. Model sets are described in 
Table 6. AW: Results for the Beta SDAM AW. PNW: Results for the SDAM PNW. NM: Results for the SDAM NM. 

 Accuracy  

 PvIvE EvALI PvNP PvIwet IvEdry  
Model set Train Test Train Test Train Test Train Test Train Test Precision 

Unstrat 87 74 93 89 93 84 89 75 85 73 87 

Unstrat GIS 97 50 98 73 99 71 98 39 96 66 94 

Strat 86 72 93 89 92 83 86 73 87 72 83 

Strat GIS 97 69 98 93 99 76 98 59 97 79 92 

AW 43 48 78 85 46 52 42 48 39 43 71 

PNW 47 49 84 87 62 62 40 40 63 57 78 

NM 55 54 84 87 68 66 55 52 56 52 86 
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Figure 10. Performance of the various model sets evaluated within strata defined by sub-region. PvIvE: Proportion of reach 
samples classified correctly as perennial, intermittent, or ephemeral. The y-axis labels on the left indicate the stratifications used 

to develop the models (if any). EvALI: Proportion of reach samples classified correctly as ephemeral or at least intermittent. 
PvNP: Proportion of reach samples classified correctly as perennial or non-perennial. PvIwet: Proportion of flowing classified 

correctly as perennial or intermittent. IvEdry: Proportion of dry reach samples correctly classified as intermittent or ephemeral. 
Model sets are described in Table 5. AW: Results for the Beta SDAM AW; PNW: Results for the SDAM PNW; NM: Results for the 

SDAM NM. 

Selection of the final model 
SDAM models newly developed through the current effort using data from the GP had better 
performance than previously developed SDAMs, confirming higher classification accuracy is 
achieved through development of region-specific SDAMs.  

Among the 10 models, performance was highest in the training dataset for the unstratified and 
stratified model versions that included GIS metrics (Figure 10; Table 6). However, performance 
of the models containing GIS data sharply decreased when evaluated against the testing 
dataset, indicating that the GIS models were overfitting to the training dataset (Figure 11).  

 



25 
 

 

Figure 11: Accuracy of the (A) unstratified GP model without GIS metrics and (B) unstratified GP model with GIS metrics based on 
training and testing datasets by strata (943 total observations). Numbers shown in bars are the percent of correctly classified 

samples as perennial, intermittent, or ephemeral. 

Between the stratified and unstratified models that did not include GIS metrics, performance 
was similar and there was no clear best model (Figure 10; Table 6). Because the stratified 
models did not show significant improvement (accuracy of training or testing datasets) over a 
single model encompassing the entire Great Plains that included a strata metric, separate 
models for each sub-region were deemed unnecessary. Thus, the decision, which was affirmed 
by the RSC, was to use the unstratified model without GIS data. 

Furthermore, the strength of the unstratified (no GIS) model increases when looking at the 
ability of the model to accurately distinguish between ephemeral and at least intermittent 
(EvALI; Figure 12) compared to distinguishing between all three classes (PvIvE; Figure 11). 
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Figure 12: Accuracy of the unstratified Great Plains model (no GIS) in distinguishing between Ephemeral and At Least 
Intermittent for training and testing datasets by strata. 

For these reasons, the unstratified model (no GIS) was selected as the beta SDAM GP to apply 
to the GP. 

Unstratified (no GIS) model description 
Eleven metrics were selected via RFE for the unstratified (no GIS) model. The metrics are shown 
in Figure 13 by their order of importance. Here, importance to the random forest model is 
considered in two ways: (1) through mean decrease in accuracy and (2) through mean decrease 
in Gini Index, which is a measure of node impurity, or how important the metric is in splitting 
between different flow duration classes. 
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Figure 13: Metrics included in the unstratified (no GIS) model, by their order of importance. (A) Mean Decrease in Accuracy is the 
relative loss in predictive performance when the particular variable is omitted from the model. (B) Mean Decrease in Gini: Gini 

Index is a measure of node impurity, or how important the variable is in splitting between different streamflow duration classes. 

To evaluate the overall performance of the unstratified (no GIS) model, confusion matrices 
were created for both training and testing datasets (Figure 14). Overall classification accuracy 
was higher for ephemeral reach samples (training 89.2%, testing 90.3%) than for perennial 
(training 86.6%, testing 74.3%) and intermittent reach samples (training 85.7%, testing 61.8%). 
No perennial reach samples were misclassified as ephemeral in either testing or training 
datasets; only two ephemeral reach samples were misclassified as perennial in the training 
dataset. The unstratified (no GIS) model had similar misclassification predictions of intermittent 
reach samples as ephemeral or perennial reaches in the testing and training datasets. 

   

A B 
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Figure 14. Confusion matrices of the (A) training vs (B) testing dataset on the unstratified (no GIS) model. The training dataset 
contained a total of 822 reach samples and the testing dataset contained 121 reach samples. X-axis shows actual flow duration 
class and Y-axis shows predicted flow duration class. Blue diagonal indicates correct predictions. P = perennial, I = intermittent, 

and E = ephemeral. Shading of boxes in matrices describe the proportion of reach samples in each dataset. 

Simplification of the selected model  
Upon selection of the unstratified (no GIS) model, the next step was to simplify the selected 
model. Simplification was intended to make the SDAM easier to implement in the field while 
improving (or at least not sacrificing) performance. Simplification occurred in three steps: 

1. Refinement of metrics 
2. Increased confidence required for classifications 
3. Addition of single indicators of at least intermittent flow 

Refinement of metrics 
The metric selection process described above identified an optimal set of metrics to use in the 
SDAM, but it did so without considering difficulties in measuring each metric or effort required 
to measure all selected metrics. For example, RFE may have selected a metric based on the 
total number of aquatic invertebrates, even if there was little new information provided once 
more than 20 individuals were recorded. That is, SDAM users might be able to cease counting 
aquatic invertebrates once 20 individuals were recorded. Simplifying metrics was intended to 
improve efficient SDAM application and facilitate method use and transparency. Improving the 
efficiency of the SDAM application also contributes to ensuring that the SDAM can be applied 
during a single site visit. 

Some metrics were eliminated because they were closely related to another metric in the 
selected model (i.e., they described similar stream characteristics, such as upland rooted plants 
and hydrophyte presence). Metrics that were more time-consuming to measure were rejected 
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if a simpler alternative was available, and continuous metrics were converted to binary or 
ordinal metrics based on visual interpretation of their distributions. (Binary and ordinal metrics 
are typically more rapid to measure and easier to standardize than continuous metrics.) 
Accuracy and repeatability measures were re-evaluated to ensure that overall model 
performance was not substantially diminished by the modifications. 

The suite of metrics of the selected model was iteratively refined while monitoring model 
accuracy and repeatability. In each iteration, one or more metrics were either eliminated, 
binned, or otherwise simplified. The impact of each iterative refinement on performance was 
assessed, and the highest performing refined model was selected. Performance was assessed in 
terms of three accuracy measures: PvIvE (i.e., proportion of reach samples classified corrected 
as perennial, intermittent, or ephemeral), EvALI (i.e., proportion of reach samples classified 
correctly as ephemeral or at least intermittent), and Cohen’s Kappa - a measure of accuracy. 
Note that the Kappa statistic varies from 0 to 1, where 0 equals agreement equivalent to 
chance and 1 equates to perfect agreement. 

Ten refinements of the unstratified (no GIS) model were performed and are summarized in 
Table 7 and Figure 15. For example, a refinement made between Version 0 and Version 1 was 
the binning the mean bankfull width from continuous data to binary data (<20 m and ≥20 m). 
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Table 7. Ten model refinement versions of the statistically determined unstratified model without GIS metrics. Includes refinement descriptions, metrics included and accuracy of refined models (PvIvE: 
Percent of reach samples classified correctly as perennial, intermittent, or ephemeral; EvALI: Percent of reach samples classified correctly as ephemeral or at least intermittent) as measured using the 
testing dataset. Bold metrics included in refined models identify the iterative metric refinements made to the previous model refinement version. 

 

 

 

 

Version 0 Version 1 Version 2 Version 3 Version 4 Version 5 Version 6 Version 7 Version 8 Version 9 Version 10 
Unstratified, no 
GIS model (no 
refinements) 

Bin continuous 
variables into 
discrete groups 

GOLDOCH 
presence/ 
absence 

GOLD presence/ 
absence 

OCH presence/ 
absence 

GOLD and OCH 
presence/ 
absence 

GOLDOCH 
abundance 
binned 

without 
GOLDOCH 
variables 

Upper, Northern 
and Central 
strata combined 

Southern, 
Northern and 
Central strata 
combined 

Upper and 
Northern strata 
combined 

Metrics Included 
BankWidthMean BankWidth 

binned 
BankWidth 
binned 

BankWidth 
binned 

BankWidth 
binned 

BankWidth 
binned 

BankWidth 
binned 

BankWidth 
binned 

BankWidth 
binned 

BankWidth 
binned 

BankWidth 
binned 

Strata Strata Strata Strata Strata Strata Strata Strata Strata UNC Strata SNC Strata UN 
PctShading PctShading 

binned 
PctShading 
binned 

PctShading 
binned 

PctShading 
binned 

PctShading 
binned 

PctShading 
binned 

PctShading 
binned 

PctShading 
binned 

PctShading 
binned 

PctShading 
binned 

EPT taxa EPT taxa binned EPT taxa binned EPT taxa binned EPT taxa binned EPT taxa binned EPT taxa binned EPT taxa binned EPT taxa binned EPT taxa binned EPT taxa binned 
Substrate 
Sorting score 

Substrate 
Sorting score 

Substrate 
Sorting score 

Substrate 
Sorting score 

Substrate 
Sorting score 

Substrate 
Sorting score 

Substrate 
Sorting score 

Substrate 
Sorting score 

Substrate 
Sorting score 

Substrate 
Sorting score 

Substrate 
Sorting score 

Sinuosity score Sinuosity score Sinuosity score Sinuosity score Sinuosity score Sinuosity score Sinuosity score Sinuosity score Sinuosity score Sinuosity score Sinuosity score 
hydrophytes 
present  

hydrophytes 
binned  

hydrophytes 
binned  

hydrophytes 
binned  

hydrophytes 
binned  

hydrophytes 
binned  

hydrophytes 
binned  

hydrophytes 
binned  

hydrophytes 
binned  

hydrophytes 
binned  

hydrophytes 
binned  

Upland Rooted 
Plants score     

Upland Rooted 
Plants score     

Upland Rooted 
Plants score     

Upland Rooted 
Plants score     

Upland Rooted 
Plants score     

Upland Rooted 
Plants score     

Upland Rooted 
Plants score     

Upland Rooted 
Plants score     

Upland Rooted 
Plants score     

Upland Rooted 
Plants score     

Upland Rooted 
Plants score     

Channel 
Dimensions 
score       

Channel 
Dimensions 
score       

Channel 
Dimensions 
score       

Channel 
Dimensions 
score       

Channel 
Dimensions 
score       

Channel 
Dimensions 
score       

Channel 
Dimensions 
score       

Channel 
Dimensions 
score       

Channel 
Dimensions 
score       

Channel 
Dimensions 
score       

Channel 
Dimensions 
score       

GOLDOCH 
reltaxa 

GOLDOCH 
reltaxa binned 

GOLDOCH y/n GOLD y/n OCH y/n GOLD y/n GOLDOCH 
relabd binned 

    

GOLDOCH 
relabd 

    OCH y/n      

Model Accuracy 
PvIvE: 72.7 
EvALI: 90.1 

PvIvE: 68.6 
EvALI: 90.1 

PvIvE: 67.8 
EvALI: 88.4 

PvIvE: 65.3 
EvALI: 89.3 

PvIvE: 61.2 
EvALI: 83.5 

PvIvE: 65.3 
EvALI: 88.4 

PvIvE: 66.1 
EvALI: 88.4 

PvIvE: 62.8 
EvALI: 84.3 

PvIvE: 68.6 
EvALI: 87.6 

PvIvE: 62.8 
EvALI: 84.3 

PvIvE: 62.8 
EvALI: 86.8 
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Figure 15. Impact of refinement of metric set on the model performance relative to the unstratified (no GIS) model using the training dataset. Each refinement description is relative the description at 0 
(unstratified, no GIS model). Black circles indicate the highest Accuracy, EvALI, and Kappa scores. Dashed lines show performance of the unstratified (no GIS) model. 
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As shown by the decreasing performance lines in Figure 15, none of the attempted refinements 
improved the performance of the unstratified (no GIS) model in terms of PvIvE accuracy, EvALI 
accuracy, or Cohen’s Kappa. However, the slight decrease in model predictive performance was 
weighed against the relative advantages of simplifying field data collection. For this reason, the 
two GOLDOCH metrics were removed due to the data collection effort required.  

Final model selection 
After consultation with the PDT and RSC, the final model selected was the Version 8 refinement 
of the unstratified (no GIS) model. The Version 8 refinement differs from the unstratified (no 
GIS) model as follows: 

• BankWidthMean, originally a continuous metric on the scale of 0.4 – 68.3 meters, was 
binned into two discrete groups (less than 20m, greater than or equal to 20m) based on 
visual interpretation of the metric distributions across ephemeral, intermittent, and 
perennial classes, and through trial-and-error testing. 

• Strata, originally containing four strata, was simplified into the two Great Plains Regions: 
the Southern Great Plains, and the Northern Great Plains (containing the Upper 
Midwest, Northern Prairie, and Central Prairie strata).  

• Percent Shading, originally a continuous metric ranging from 0-100%, was binned into 
discrete groups (less than 10% and greater than or equal to 10%) based on visual 
interpretation of the metric distributions across ephemeral, intermittent, and perennial 
classes, and through trial-and-error testing. 

• Number of EPT families ranged from zero to seven in the original dataset. This was 
simplified in the refined model into two discrete groups (zero to one family, two or 
more families). This metric binning was based on visual interpretation of the metric 
distributions across streamflow duration classes and through trial-and-error testing. 
However, the beta SDAM GP User Manual recommends enumerating up to five families, 
if present, to provide redundancy.  

• Number of hydrophytic species recorded ranged from zero to eight species in the 
original dataset. This was simplified in the refined model into two discrete groups (fewer 
than two species, two or more species). This metric binning was based on visual 
interpretation of the metric distributions across streamflow duration classes and 
through trial-and-error testing. However, the beta SDAM GP User Manual recommends 
enumerating up to five families, if present, to provide redundancy. 

• GOLDOCH_reltaxa and GOLDOCH_relabd were removed from the model. 

The performance of the Version 8 refined model is shown as confusion matrices (Figure 16). 
There was a decrease in performance based on the training dataset (Figure 15), relative to the 
unstratified (no GIS) model, but of similar performance based on the testing dataset (Table 7). 
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Figure 16: Performance of the selected refined model based on (A) training (822 reach samples) and (B) testing (121 reach 
samples) datasets. X-axis shows actual flow duration class and Y-axis shows predicted flow duration class. Blue diagonal 
indicates correct predictions. P = perennial, I = intermittent, and E = ephemeral. Shading of boxes in matrices describe the 

proportion of reach samples in each dataset. 

Using the refined model, two reaches in the training dataset continued to incorrectly predict 
ephemeral when the correct classification was perennial during one of four visits to the sites. In 
addition, two reaches in the training dataset incorrectly predicted perennial when the correct 
classification was ephemeral during one of four visits to the sites. The four sites were the 
following: 

Reach Code State Strata Actual Predicted 
TXSB14 TX Southern P E 
WIUB20 WI Upper P E 
WIUB37 WI Upper E P 
WYNB1 WY Northern E P 

 

No incorrect predictions between ephemeral and perennial occurred using the refined model 
on the testing dataset.   

Increased confidence required for classifications 
Random forest models created for classification traditionally make assignments based on the 
class that receives the highest number of votes by each “tree” in the forest. Thus, in a three-
way decision (ephemeral, intermittent, or perennial), the class with the most votes could 
receive much less than a majority of all votes—as low as 34%. Given concern that such low-
confidence classifications may not provide sufficient defensibility for some management 
decisions, approaches to distinguish between high- and low-confidence classifications were 
explored.  



34 
 

We explored increasing the minimum number of votes required to make a confident 
classification from 30% to 100% by increments of 1% to understand the effect on classification. 
When the selected refined model was applied to a novel test reach and a single class received a 
sufficient percent of votes, then the reach was classified accordingly. If none met the minimum 
but the combined percent of votes for intermittent and perennial classes exceeded the 
minimum, then the reach was classified as at least intermittent. In all other cases, the reach 
was classified as need more information. This decision framework reflects that distinguishing 
between ephemeral and at least intermittent reaches is a high priority use of the beta SDAM 
GP. The percent of reaches under each of the five possible classifications with increasing 
minimum vote agreement thresholds were calculated. 

At a minimum required proportion of votes of 0.5, only 3.5% of reach samples in the training 
dataset (5% of reach samples in the test dataset) were classified as at least intermittent, and 
none were classified need more information (Figure 16). Classifications of at least intermittent 
first appear with a minimum proportion of 0.37 in the training dataset (0.45 in the testing 
dataset), whereas classifications of need more information appear at 0.51 in both the training 
and testing datasets. Although it cannot be ruled out, it is unlikely that the beta SDAM GP will 
result in a classification of need more information. Based on these results the RSC 
recommended a minimum proportion threshold of 0.5 for flow classification. 

 

Figure 17. Influence of the minimum proportion of votes required to make a classification on n (the number of reaches in each 
class). NMI: Need more information. ALI: At least intermittent. P: Perennial. I: Intermittent. E: Ephemeral. The vertical black line 

represents a minimum proportion of required votes of 0.5, reflecting the final recommendation of the RSC. The two red lines 
represent the proportion of votes that first result in classification of ALI (the lower line) or NMI (the upper line) for the dataset. 

Evaluation of single indicators of at least intermittent flow 
Single indicators can supersede a model classification of ephemeral to make it change to at 
least intermittent. Single indicators provide technical benefits (i.e., improved accuracy) as well 
as non-technical benefits, such as greater acceptance of the SDAM, given public understanding 
of the role of streamflow duration in supporting biological organisms and rapidity of 
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determining a flow classification.  Single indicators are also used in other SDAMs (e.g., Nadeau 
et al. 2015, Dorney and Russell 2018, Mazor et al. 2021a); for instance, indicators can include 
the presence of fish, iron-oxidizing bacteria, hydric soils, and/or aquatic vertebrates 
(amphibians and reptiles), among others.  

We evaluated single indicators used in previous SDAMs. The number of instances where 
inclusion of a prior single indicator would correct a misclassification (i.e., the reach was truly 
intermittent or perennial) and would introduce a misclassification/mistake (i.e., the reach was 
truly ephemeral) was quantified. All single indicators investigated had minimal impact on 
performance or introduced more errors than were corrected (Figure 18). Based on these 
results, the RSC did not recommend including any of the evaluated single indicators in the beta 
SDAM GP.  

 

Figure 18. Influence of single indicators on performance of the refined model 

Performance of the beta SDAM GP 
Performance of the selected refined model (with a minimum proportion voting threshold of 
0.5) for the beta SDAM GP is summarized in Table 8. The overall classification accuracy  among 
the three classes (perennial, intermittent, ephemeral) was 81% in the training dataset (and 68% 
in the testing dataset), but this accuracy increased to 89% in the training dataset (and 87% in 
the testing dataset) when only ephemeral versus at least intermittent classifications were 
considered (i.e., both blue and green cells in Table 8 were treated as correct). Note, after 
applying the voting threshold one of the two instances in the training dataset that incorrectly 
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predicted perennial when the correct classification was ephemeral changed to a prediction of at 
least intermittent (WYNB1). 

Table 8. Classifications of the final version of the beta SDAM GP. Blue cells indicate correct classifications of perennial, 
intermittent, at least intermittent and ephemeral reaches, whereas green cells indicate correct classifications of ephemeral 
versus at least intermittent. Green numbers represent the reach visits with matching actual and predicted classes and red 
numbers are reach visits with non-matching actual and predicted classes. 

 Actual streamflow duration class 

Predicted 
Class 

Ephemeral 
(Training) 

Ephemeral 
(Testing) 

Intermittent 
(Training) 

Intermittent 
(Testing) 

Perennial 
(Training) 

Perennial 
(Testing) 

Ephemeral 193 24 47 9 2 0 
Intermittent 30 5 236 31 40 14 
ALI 7 2 17 7 5 1 
Perennial 1 0 29 8 215 20 

 

 

Using the LandUse indicator to identify reaches that were disturbed (LandUse = urban or 
agriculture, alone or in combination with any other land use category) and not disturbed 
(LandUse does not include urban or agriculture) at the time of the site visit, there were 133 
individual reaches identified as disturbed during at least one site visit with a total of 229 
disturbed samples (before augmentation). There were 192 (34%) and 37 (31%) disturbed 
samples included in the training and testing datasets, respectively. These tallies and the 
accuracy results provided below focus on the samples of the original dataset before 
augmentation (n = 692). 

Among the samples identified as disturbed by human activity in the training dataset, accuracy 
among all classes was 76%, which improved to 86% when only ephemeral versus at least 
intermittent classifications were considered. For samples in the training dataset that were not 
disturbed, the accuracy values indicated similar performance to that of the disturbed sites (i.e., 
73% PvIvE and 84% EvALI).  

For the samples in the testing dataset, the accuracy among all classes for disturbed sites was 
78%, which improved to 89% when only ephemeral versus at least intermittent classifications 
were considered. For samples in the testing dataset that were not disturbed, accuracy among 
all classes was 64%, which improved to 86% when only ephemeral versus at least intermittent 
classifications were considered. 

Data and code availability 
All data used to develop the method and R code used in analysis are available at the following 
git repository: https://doi.org/10.23719/1527943 
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Next steps 
The beta SDAM GP is being made available for one year for public review and comment while 
additional data at the study sites are collected through 2022, after which a final method will be 
developed and released to replace the beta method. 

Acknowledgements 
The development of this method and supporting materials was guided by a regional steering 
committee (RSC) consisting of representatives of federal regulatory agencies in the Great Plains 
of the U.S.: Micah Bennett (U.S. Environmental Protection Agency [USEPA]—Region 5), Andrew 
Blackburn (U.S. Army Corps of Engineers [USACE]—Great Lakes and Ohio Valley Division, 
Chicago District), Kirsten Brown (USACE—Mississippi Valley Division, Rock Island District), Billy 
Bunch (USEPA—Region 8), Gabrielle C. L. David (USACE—Engineer Research and Development 
Center, Cold Regions Research and Engineering Laboratory), Gabriel DuPree (USEPA—Region 7), 
Wayne Fitzpatrick (USACE—Southwestern Division, Galveston District), Jeremy Grauf (USACE—
Northwestern Division, Omaha District), Ed Hammer (USEPA—Region 5), Rachel Harrington 
(USEPA—Region 8), Faye Healy (USACE—Mississippi Valley Division, St. Paul District), Shawn 
Henderson (USEPA—Region 7), Rob Hoffman, (USACE—Southwestern Division, Tulsa District), 
Rose Kwok (USEPA—Headquarters), April Marcangeli (USACE—Mississippi Valley Division, St. 
Paul District), Tunis McElwain (USACE—Headquarters), Elizabeth Shelton (USACE—
Southwestern Division, Galveston District), Chelsey Sherwood (USEPA—Region 6), Loribeth 
Tanner (USEPA—Region 6), Kerryann Weaver (USEPA—Region 5), and Matt Wilson (USACE—
Headquarters).  

We thank Abel Santana, Robert Butler, Duy Nguyen, Kristine Gesulga, and Anne Holt for 
assistance with data management, and Abe Margo, Alex Martinez, Addison Ochs, Morgan 
Proko, Alec Lambert, Zak Erickson, Alex Berryman, Jack Poole, Joe Kiel, Joe Klein, Jackson Bates, 
Buck Meyer, Margaret O’Brien, Elliot Broder, Jason Glover, and James Treacy for assistance with 
data collection. Amy James provided document editorial and formatting assistance.   

Numerous researchers and land managers with local expertise assisted with the selection of 
study reaches to calibrate the method: Tim Bonner, Jeffrey Brenkenridge, Taylor Dorn, Tim 
Fallon, John Genet, Linda Hansen, Garret Hecker, Stephanie Kampf, Kort Kirkeby, Ji Yeow Law, 
John Lyons, Kyle McLean, Miranda Meehan, Steve Robinson, Mateo Scoggins, Patrick Trier, 
Linda Vance, Ross Vander Vorste, and Jason Zhang.  

References 
Cao, Y., and C. P. Hawkins. 2011. The comparability of bioassessments: a review of conceptual 
and methodological issues. Journal of the North American Benthological Society 30: 680–701. 

Chapin, T. P., A. S. Todd, and M. P. Zeigler. 2014. Robust, low-cost data loggers for stream 
temperature, flow intermittency, and relative conductivity monitoring. Water Resources 
Research 50: 6542–6548. 



38 
 

Dorney, J., and P. Russell. 2018. North Carolina Division of Water Quality methodology for 
identification of intermittent and perennial streams and their origins. Pages 273–279 in J. 
Dorney, R. Savage, R. W. Tiner, and P. Adamus (eds.), Wetland and Stream Rapid Assessments. 
Elsevier, San Diego, CA. 

Eng, K., D. M. Wolock, and M. D. Dettinger. 2016. Sensitivity of intermittent streams to climate 
variations in the USA. River Research Applications 32: 885–895. 

Fritz, K. M., T.-L. Nadeau, J. E. Kelso, W. S. Beck, R. D. Mazor, R. A. Harrington, and B. J. Topping. 
2020. Classifying streamflow duration: The scientific basis and an operational framework for 
method development. Water 12: 2545. 

Gower, J.C. 1971. A general coefficient of similarity and some of its properties. Biometrics 27: 
857-874. 

Hart, E., and K. Bell. 2015. Prism: Access Data From The Oregon State Prism Climate Project. 

Hawkins, C. P., Y. Cao, and B. Roper. 2010. Method of predicting reference condition biota 
affects the performance and interpretation of ecological indices. Freshwater Biology 55: 1066–
1085. 

Hedman, E. R., and Osterkamp, W.R. 1982. Stream Flow Characteristics Related to Channel 
Geometry of Streams in Western United States. USGS Water-Supply Paper 2193, Washington, 
DC. p. 17. DOI:10.3133/wsp2193. 

Hewlett, J. D. 1982. Principles of Forest Hydrology; University of Georgia Press: Athens, GA, 
USA, p. 192. 

Jaeger, K.L., R. Sando, R. R. McShane, J. B. Dunham, D. P. Hockman-Wert, K. E. Kaiser, K. Hafen, 
J. C. Risley, and K. W. Blasch. 2019. Probability of streamflow permanence model (PROSPER): a 
spatially continuous model of annual streamflow permanence throughout the Pacific 
Northwest. Journal of Hydrology X 2: 1000005. 

James, A., K. McCune, and R. Mazor. 2022. Review of Flow Duration Methods and Indicators of 
Flow Duration in the Scientific Literature, Great Plains of the United States. Document No. EPA-
840-B-22006. 56 pp. (Available from: https://www.epa.gov/system/files/documents/2022-
09/FlowDurationLitReview-gp.pdf) 

James, G., D. Witten, T. Hastie, and R. Tibshirani. 2013. An Introduction to Statistical Learning. 
Springer, NY. 440 pp. 

Kelso, J. E., and K. M. Fritz. 2021. Standard Operating Procedure: Processing Data and 
Classifying Streamflow Duration Using Continuous Hydrologic Data. EPA Report J-WECD-ECB-
SOP-4425-0. Environmental Protection Agency, Cincinnati, OH. 25 pp. 

https://www.epa.gov/system/files/documents/2022-09/FlowDurationLitReview-gp.pdf
https://www.epa.gov/system/files/documents/2022-09/FlowDurationLitReview-gp.pdf


39 
 

Kuhn, M. 2020. caret: Classification and Regression Training. (Available from: https://cran.r-
project.org/web/packages/caret/caret.pdf) 

Liaw, A., and M. Wiener. 2002. Classification and regression by randomForest. R News 2: 18–22. 

Mazor, R. D., A. C. Rehn, P. R. Ode, M. Engeln, K. C. Schiff, E. D. Stein, D. J. Gillett, D. B. Herbst, 
and C. P. Hawkins. 2016. Bioassessment in complex environments: designing an index for 
consistent meaning in different settings. Freshwater Science 35: 249–271. 

Mazor, R. D., B. J. Topping, T.-L. Nadeau, K. M. Fritz, J. E. Kelso, R. A. Harrington, W. S. Beck, K. 
McCune, H. Lowman, A. Aaron, R. Leidy, J. T. Robb, and G. C. L. David. 2021a. User Manual for a 
Beta Streamflow Duration Assessment Method for the Arid West of the United States. Version 
1.0. Document No. EPA 800-K-21001. 83 pp. (Available from: 
https://www.epa.gov/sites/production/files/2021-
03/documents/user_manual_beta_sdam_aw.pdf) 

Mazor, R. D., B. J. Topping, T.-L. Nadeau, K. M. Fritz, J. E. Kelso, R. A. Harrington, W. S. Beck, K. S. 
McCune, A. O. Allen, R. Leidy, J. T. Robb, and G. C. L. David. 2021b. Implementing an operational 
framework to develop a streamflow duration assessment method: A case study from the Arid 
West United States. Water 13: 3310. 

Mazor, R. D., B. J. Topping, T.-L. Nadeau, K. M. Fritz, J. E. Kelso, R. A. Harrington, W. S. Beck, K. 
McCune, A. Allen, R. Leidy, J. T. Robb, G. C. L. David, and L. Tanner. 2021c. User Manual for a 
Beta Streamflow Duration Assessment Method for the Western Mountains of the United 
States. Version 1.0. Document No. EPA-840-B-21008. 116 pp. (Available from: 
https://www.epa.gov/system/files/documents/2021-12/beta-sdam-for-the-wm-user-
manual.pdf) 

Mazor, R.D., Fritz, K.M., Topping, B., Nadeau, T.-L., and Kelso, J. 2022. Development and 
Evaluation of the Beta Streamflow Duration Assessment Method for the Western Mountains – 
Data Supplement. Document No. EPA 840-R-22002. 38 pp. (Available from: 
https://www.epa.gov/system/files/documents/2022-05/WM%20Data%20supplement_5-4-
22%20FINAL.pdf) 

Mohammed, R., J. Rawashdeh, and M. Abdullah. 2020. Machine learning with oversampling and 
undersampling techniques: Overview study and experimental results. Pages 243-248 in 
Proceedings of the 11th International Conference on Information and Communication Systems. 
Irbid, Jordan 7-9 April 2020. 

Nadeau, T.-L. 2015. Streamflow Duration Assessment Method for the Pacific Northwest. EPA 
910-K-14-001, U.S. Environmental Protection Agency. 36 pp. (Available from: 
https://www.epa.gov/sites/default/files/2016-
01/documents/streamflow_duration_assessment_method_pacific_northwest_2015.pdf) 



40 
 

Nadeau, T.-L., S. G. Leibowitz, P. J. Wigington, J. L. Ebersole, K. M. Fritz, R. A. Coulombe, R. L. 
Comeleo, and K. A. Blocksom. 2015. Validation of rapid assessment methods to determine 
streamflow duration classes in the Pacific Northwest, USA. Environmental Management 56: 34–
53. 

New Mexico Environment Department (NMED). 2011. Hydrology Protocol for the 
Determination of Uses Supported by Ephemeral, Intermittent, and Perennial Waters. Surface 
Water Quality Bureau, New Mexico Environment Department, Albuquerque, NM. 35 pp. 
(Available from: https://www.env.nm.gov/surface-water-quality/wp-
content/uploads/sites/25/2019/11/WQMP-CPP-Appendix-C-Hydrology-Protocol-20201023-
APPROVED.pdf) 

Omernik, J.M. 1995. Ecoregions: a framework for managing ecosystems. The George Wright 
Forum 12: 35–50. 

Perkin, J. S., K. B. Gido, J. A. Falke, K. D. Fausch, H. Crockett, E. R. Johnson, and J. Sanderson. 
2017. Groundwater declines are linked to changes in Great Plains stream fish assemblages. 
Proceedings of the National Academy of Sciences USA 114: 7373–7378. 

Schumacher, C., and K. M. Fritz. 2019. Standard Operating Procedure: Verifying/Calibrating, 
Deploying, Retrieving Stream Temperature, Intermittency, and Conductivity (STIC) Data 
Loggers, and Downloading and Converting Data. EPA Report J-WECD-ECB-SOP-1016-02. 
Environmental Protection Agency, Cincinnati, OH. 13 pp. 

United States Environmental Protection Agency (USEPA). 2019. Flow duration protocol version 
2.1. 38 pp. 

Vengosh, A., R. B. Jackson, N. Warner, T. H. Darrah, and A. Kondash. 2014. A critical review of 
the risks to water resources from shale gas development and hydraulic fracturing in the United 
States. Environmental Science & Technology 48: 8334–8348. 

Wohl, E., M. K. Mersel, A. O. Allen, K. M. Fritz, S. L. Kichefski, R. W. Lichvar, T.-L. Nadeau, B. J. 
Topping, P. H. Trier, and F. B. Vanderbilt. 2016. Synthesizing the Scientific Foundation for 
Ordinary High Water Mark Delineation in Fluvial Systems. Wetlands Regulatory Assistance 
Program ERDC/CCREL SR-16-5, U.S. Army Corps of Engineers Engineer Research and 
Development Center. 217 pp. (Available from: https://apps.dtic.mil/sti/pdfs/AD1025116.pdf) 

Wolock, D. M. 2003. Base-flow index grid for the conterminous United States: U.S. Geological 
Survey Open-File Report 03-263, digital dataset. (Available from: 
https://water.usgs.gov/lookup/getspatial?bfi48grd) 



41 
 

Appendix A: Glossary of Terms Used 
Streamflow Class Description 
Ephemeral reaches Flow only in direct response to precipitation. Water typically flows only during and/or 

shortly after large precipitation events, the streambed is always above the water table, 
and stormwater runoff is the primary water source. 

Intermittent reaches Contain sustained flowing water for only part of the year, typically during the wet season, 
where the streambed may be below the water table or where the snowmelt from 
surrounding uplands provides sustained flow. The flow may vary greatly with stormwater 
runoff. 

Perennial reaches Contain flowing water continuously during a year of normal rainfall, often with the 
streambed located below the water table for most of the year. Groundwater typically 
supplies the baseflow for perennial reaches, but the baseflow may also be supplemented 
by stormwater runoff or snowmelt. 

At Least Intermittent (ALI) Contain more than ephemeral flow but cannot be determined with high confidence if it is 
intermittent or perennial  

  

Performance Measure Description 
PvIvE Overall measure of accuracy. Ability of model to correctly classify between Perennial 

versus Intermittent versus Ephemeral. Calculated as the percent of reach-visits classified 
correctly (weighted by the number of visits per reach). 

EvALI Ability of model to correctly classify between Ephemeral and At Least Intermittent (I or P). 
Calculated as the percent of reach-visits classified correctly (weighted by the number of 
visits per reach). 

Precision For reaches that have multiple visits, are they consistently predicted correctly? Calculated 
as the proportion of visits within a reach with the most frequent classification, averaged 
across reaches. 

  

Dataset Description 
Training A subset of 80% of the total reaches that was used for model development. This subset 

was randomly selected, stratifying by strata (i.e., Southern, Central, Upper, and Northern), 
and actual streamflow duration class (i.e., perennial, intermittent, and ephemeral). 

Testing A subset of 20% of the total reaches that was used for model testing and is independent 
from the training reaches. This subset was randomly selected, stratifying by strata (i.e., 
Southern, Central, Upper, and Northern) and actual streamflow duration class (i.e., 
perennial, intermittent, and ephemeral). 

Note: Data are divided by reach so that all visits at a single reach are included either in training or testing 

Candidate Metric Description Type Selected by 
RFE 

Strata SDAM subregions includes Central Prairie, Upper Midwest, 
Northern Prairie, Southern Plains. This is also used for the 
Northern Great Plains and Southern Great Plains. 

GIS No  

Algae_score (NM) Are Filamentous Algae and/or periphyton present at the reach? 
Higher scores indicate that algae were more prevalent and 
easier to find in the reach. 

Bio 
(algae) 

No  

algdead_cover_score Dead algal cover on the streambed within the study reach Bio 
(algae) 

No  

algdead_noupstream_cover_sc
ore 

Are algae on the streambed within the study reach likely from 
upstream source (i.e., dead mats deposited in downstream 
reach)? 

Bio 
(algae) 

No  

alglive_cover_score Live algal cover on the streambed within the study reach Bio 
(algae) 

No  
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Candidate Metric Description Type Selected by 
RFE 

alglivedead_cover_score Visual estimate of the percent of streambed covered by live or 
dead algal growth 

Bio 
(algae) 

No  

ai_present (PNW) Presence/absence of aquatic invertebrate within the sample 
reach 

Bio 
(aquatic 
inverts) 

No  

BMI_score (NM) Benthic MacroInvertebrate (BMI) abundance. Higher scores 
indicate that BMI were more prevalent and easier to find in the 
reach. 

Bio 
(aquatic 
inverts) 

No  

EPT_abundance Abundance of mayflies, stoneflies, or caddisflies (i.e., 
Ephemeroptera, Plecoptera, Trichoptera, EPT) 

Bio 
(aquatic 
inverts) 

No  

EPT_relabd Relative abundance of EPT families Bio 
(aquatic 
inverts) 

No  

EPT_reltaxa Relative richness of EPT families Bio 
(aquatic 
inverts) 

No  

EPT_taxa Number of EPT families Bio 
(aquatic 
inverts) 

Yes 

GOLD_abundance Abundance of Gastropoda, Oligochaeta, and Diptera (GOLD) Bio 
(aquatic 
inverts) 

No  

GOLD_relabd Relative abundance of Gastropoda, Oligochaeta. and Diptera 
(GOLD) taxa 

Bio 
(aquatic 
inverts) 

No  

GOLD_reltaxa Relative richness of Gastropoda, Oligochaeta, and Diptera 
(GOLD) taxa 

Bio 
(aquatic 
inverts) 

No  

GOLD_taxa Number of Gastropoda, Oligochaeta, and Diptera (GOLD) 
families 

Bio 
(aquatic 
inverts) 

No  

GOLDOCH_relabd Relative abundance of GOLD and OCH taxa Bio 
(aquatic 
inverts) 

No  

GOLDOCH_reltaxa Relative richness of GOLD and OCH taxa Bio 
(aquatic 
inverts) 

No  

mayfly_abundance Abundance of mayflies Bio 
(aquatic 
inverts) 

No  

mayfly_gt6 (PNW) Mayfly abundance greater than six Bio 
(aquatic 
inverts) 

No  

Noninsect_abundance Abundance of non-insect invertebrate taxa Bio 
(aquatic 
inverts) 

No  

Noninsect_relabund Relative abundance of non-insect invertebrate taxa Bio 
(aquatic 
inverts) 

No  

Noninsect_reltaxa Relative richness of non-insect invertebrate taxa Bio 
(aquatic 
inverts) 

No  
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Candidate Metric Description Type Selected by 
RFE 

Noninsect_taxa Richness of non-insect invertebrate taxa Bio 
(aquatic 
inverts) 

No  

OCH_abundance Abundance of Odonata, Coleoptera, and Heteroptera (OCH) Bio 
(aquatic 
inverts) 

No  

OCH_relabd Relative abundance of Odonata, Coleoptera, and Heteroptera 
(OCH) taxa 

Bio 
(aquatic 
inverts) 

No  

OCH_reltaxa Relative richness of Odonata, Coleoptera, and Heteroptera 
(OCH) taxa 

Bio 
(aquatic 
inverts) 

No  

OCH_taxa Number of Odonata, Coleoptera, and Heteroptera (OCH) 
families 

Bio 
(aquatic 
inverts) 

No  

peren_present (PNW) Presence/absence of perennial indicator invertebrate taxa 
within the study reach 

Bio 
(aquatic 
inverts) 

No  

perennial_abundance Abundance of perennial invertebrate indicator taxa Bio 
(aquatic 
inverts) 

No  

perennial_live_abundance Abundance of perennial invertebrate indicator taxa (living 
specimens only) 

Bio 
(aquatic 
inverts) 

No  

perennial_taxa Number of perennial invertebrate indicator taxa Bio 
(aquatic 
inverts) 

No  

Richness Total richness of aquatic invertebrate families Bio 
(aquatic 
inverts) 

No  

TotalAbundance Total abundance of aquatic invertebrates Bio 
(aquatic 
inverts) 

No  

iofb_score (NM) Presence/absence of iron-oxidizing bacteria and fungi. Bio 
(other) 

No  

liverwort_cover_score Liverwort cover on the streambed. Higher scores indicate 
higher liverwort cover on streambed. 

Bio 
(other) 

No  

moss_cover_score Moss cover on the streambed. Higher scores indicate higher 
moss cover on streambed. 

Bio 
(other) 

No  

DifferencesInVegetation_score 
(NM) 

Differences in vegetation between the riparian corridor and 
adjacent uplands score. Higher scores indicate a more distinct 
riparian corridor. 

Bio 
(veg) 

No  

hydrophytes_present  Number of hydrophytic plant species (FACW or OBL) observed 
within the study reach channel and 1/2 channel width of the 
stream on either bank 

Bio 
(veg) 

No  

hydrophytes_present_any 
(PNW) 

Is the presence/absence of hydrophytes within the study reach 
channel and 1/2 channel width of the stream on either bank? 

Bio 
(veg) 

No  

hydrophytes_present_noflag Number of hydrophytic plant species (FACW or OBL) observed 
within the study reach channel and 1/2 channel width of the 
stream on either bank (excluding taxa with unusual 
distributions flagged by the field crew) 

Bio 
(veg) 

Yes  

PctShading Percent shading on the streambed.  Bio 
(veg) 

Yes  
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Candidate Metric Description Type Selected by 
RFE 

ripariancorr_score (PNW) With/without distinctive vegetation in the riparian corridor 
compared to surrounding upland vegetation.  

Bio 
(veg) 

No  

UplandRootedPlants_score 
(NM) 

Are upland rooted plants absent from the streambed score? 
Higher scores indicate fewer upland plants in the streambed. 

Bio 
(veg) 

Yes  

amphib_score (PNW) Detection of aquatic life stage(s) of amphibian(s) within the 
study reach.  

Bio 
(verts) 

No  

Fish_score (NM) Fish abundance score. Higher scores indicate that fish were 
more prevalent and easier to find in the reach.  

Bio 
(verts) 

No  

fishabund_score2 When Mosquitofish are present, set to 0. Otherwise, use 
Fish_score (which is the abundance of fish). 

Bio 
(verts) 

No  

frogvoc_score Presence/absence of frog vocalizations Bio 
(verts) 

No  

snake_score (PNW) Presence/absence of aquatic snakes within the study reach Bio 
(verts) 

No  

turt_score Presence/absence of turtle(s) within the study reach Bio 
(verts) 

No  

vert_score Presence/absence of aquatic vertebrates. max(snake_score, 
amphib_score, turt_score, frogvoc_score) 

Bio 
(verts) 

No  

vert_sumscore Number of aquatic vertebrate types present. (Sum of 
snake_score, amphib_score, and turt_score) 

Bio 
(verts) 

No  

vertvoc_sumscore Sum of (snake_score, amphib_score, turt_score, frogvoc_score) Bio 
(verts) 

No  

BankWidthMean Mean of columns that start with 'Bankwidth' Geom Yes  

ChannelDimensions_score (NM) Scored channel entrenchment metric from the New Mexico 
protocol; higher scores indicate less entrenchment and more 
access to the floodplain. Higher scores indicate the channel was 
less confined (had higher entrenchment ratios). 

Geom Yes  

erosion_score (PNW) Presence/absence of evidence of fluvial erosion (e.g., undercut 
banks, scour marks, channel downcutting, channel incision) 
and/or deposition (e.g., bars, recent deposits) within the study 
reach channel? 

Geom No  

floodplain_score (PNW) Presence/absence of a true floodplain at the reach? Geom No  

SedimentOnPlantsDebris_score 
(NM) 

Visual estimate of the extent of evidence of sediment 
deposition on plants and on debris within the floodplain. Higher 
scores indicate that sediment deposition was more prevalent 
throughout the reach. 

Geom No  

Sinuosity_score (NM) Scored channel sinuosity. Higher scores indicate more sinuous 
channels. 

Geom Yes  

Slope Reach slope as measured with a handheld clinometer Geom No  

slope_gt10.5 (PNW) Straightline reach slope as measured with a handheld 
clinometer greater than or equal to 10.5% 

Geom No  

slope_gt16 (PNW) Straightline reach slope as measured with a handheld 
clinometer greater than or equal to 16% 

Geom No  

SubstrateSorting_score (NM) Visual estimate of the extent of evidence of substrate sorting 
within the channel. Higher scores indicate greater sorting of 
substrate within the channel relative to surrounding uplands. 

Geom Yes  

RifflePoolSeq_score (NM) Visual estimate of the diversity and distinctiveness of riffles, 
pools, and other flow-based microhabitats. Higher scores 
indicate more distinctive riffles, pools, and other flow habitats 
with clear transitions within the reach. 

Geom No 

BFI Base flow Index: estimated percentage of total flow that is 
attributed to groundwater discharge to streams by 
interpolating values from USGS stream gages 

GIS No 
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Candidate Metric Description Type Selected by 
RFE 

Elev_m Watershed elevation retrieved from StreamCat database  GIS No 

MeanSnowPersistence_01 Mean snow persistence within a 1-km radius of the reach GIS No  

MeanSnowPersistence_05 Mean snow persistence within a 5-km radius of the reach GIS No  

MeanSnowPersistence_10 Mean snow persistence within a 10-km radius of the reach GIS No  

ppt Mean annual precipitation GIS No  

ppt.m01 Mean January precipitation GIS No  

ppt.m02 Mean February precipitation GIS No  

ppt.m03 Mean March precipitation GIS No  

ppt.m04 Mean April precipitation GIS No  

ppt.m05 Mean May precipitation GIS No  

ppt.m06 Mean June precipitation GIS No  

ppt.m07 Mean July precipitation GIS No  

ppt.m08 Mean August precipitation GIS No  

ppt.m09 Mean September precipitation GIS No  

ppt.m10 Mean October precipitation GIS No  

ppt.m11 Mean November precipitation GIS No  

ppt.m12 Mean December precipitation GIS No  

tmax Maximum annual temperature (PRISM 30-year normal) GIS No  

tmean Mean annual temperature (PRISM 30-year normal) GIS No  

tmin Minimum annual temperature (PRISM 30-year normal) GIS No  

HydricSoils_score (NM) Presence/absence of hydric soils within the study reach Hydro No  

WoodyJams_number Number of woody jams present within the study reach channel 
(or up to 10 m outside of the study reach). Woody jams much 
completely span the active channel and be in contact with the 
streambed. Contain at least 3 large pieces (>1 m long and >10 
cm diameter).  Cause sufficient blockage to disrupt flow of 
water or sediment under flowing conditions.  

Hydro No  

IsolatedPools_number (PNW)* Number of pools (must have surface water) with no evidence of 
surface water flow in or out 

Hydro No  

SurfaceFlow_pct (PNW)* Visual estimate of percentage of reach length that has flowing 
surface water. 

Hydro No  

SurfaceSubsurfaceFlow_pct 
(PNW)* 

Visual estimate of percentage of reach length that has flowing 
surface water or sub-surface (hyporheic) flow 

Hydro No  

SoilMoist_MaxScore* Soil is qualitatively assessed for moisture level (saturated, partly 
saturated, or dry) in three locations. This indicator uses the 
wettest score out of the three. 

Hydro No  

SoilMoist_MeanScore* Soil is qualitatively assessed for moisture level (saturated, partly 
saturated, or dry) in three locations. This indicator uses the 
mean moisture score observed over all three locations. 

Hydro No  

springs_score (NM)* Scored abundance of seeps and/or springs within the sample 
reach. Higher scores indicate larger numbers of seeps and/or 
springs. 

Hydro No  

WaterInChannel_score (NM)* Scored surface water flow/presence in the sample reach. 
Higher scores indicate channels with greater levels of surface 
water flow/presence. 

Hydro No  

Asterisks (*) indicate hydrologic metrics that directly measure the presence of water. 
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