

Sampling Cyanobacteria – From Cells to Toxins

Jennifer L. Graham

U.S. Geological Survey

U.S Environmental Protection Agency CyanoSymposium 2023

October 16, 2023

U.S. Department of the Interior U.S. Geological Survey

Cyanobacteria and Cyanotoxins are Diverse

	<u>Hepatotoxins</u>		<u>Neurot</u>	oxins	Dermatoxins
	CYL	MC	ANA	SAX	
Anabaena/Dolichospermum	X	X	X	X	X
Aphanizomenon	X	?	X	X	X
Microcystis		X			X
Oscillatoria/Planktothrix		X	X	X	X

Photo Credit: A. St. Amand, PhycoTech

The Spatiotemporal Variability of Cyanobacteria Poses Unique Challenges to Monitoring and Assessment

Rock Creek Lake, Iowa 2006 Beach Closure Event

Beach Area Monday July 31

The Spatiotemporal Variability of Cyanobacteria Poses Unique Challenges to Monitoring and Assessment

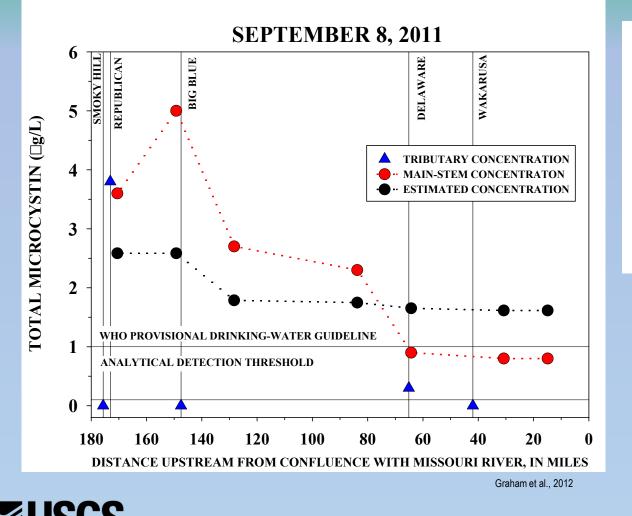


Photo Credit: K. Bouma-Gregson, USGS

Photo Credit: K. Carpenter, USGS

Cyanobacteria and Cyanotoxins May Be Transported for Long Distances Downstream of Source Areas

science for a changing world

OPEN OACCESS Freely available online

Evidence for a Novel Marine Harmful Algal Bloom: Cyanotoxin (Microcystin) Transfer from Land to Sea Otters

Melissa A. Miller^{1,2*}, Raphael M. Kudela², Abdu Mekebri³, Dave Crane³, Stori C. Oates¹, M. Timothy Tinker⁴, Michelle Staedler⁵, Woutrina A. Miller⁶, Sharon Toy-Choutka¹, Clare Dominik⁷, Dane Hardin⁷, Gregg Langlois⁸, Michael Murray⁵, Kim Ward⁹, David A. Jessup¹

1 Marine Wildlife Veterinary Care and Research Center, California Department of Fish and Game, Office of Spill Prevention and Response, Santa Cruz, California, United

States of America, **2** Ocean Sciences Departr California Department of Fish and Game, C Center, United States Geological Survey, Loi States of America, **6** Department of Patholog of America, **7** Applied Marine Sciences, Live America, **9** Division of Water Quality, State

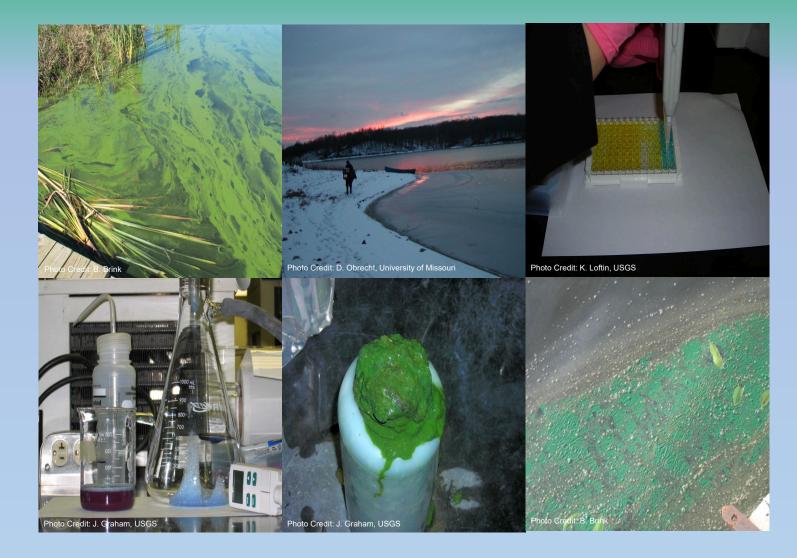
hoto Credit: Getty Imag

Overview

- Why sample?
- When to sample?
- Where to sample?
- *How* to sample?
- What to sample?
 - Direct measures
 - Cyanobacteria
 - Cyanotoxins
 - Indirect measures
 - Cameras
 - Pigments
 - Genetics

Why Sample?

Public Health Protection


- Recreational Areas
- Drinking Water Supplies
- Mitigation and Management

Reconnaissance

- Occurrence
- Distribution
- Concentration
- Status and Trends

Research

- Fate and Transport
- Environmental Drivers
- Ecosystem Effects

The Why Informs All Other Aspects of Sample Collection

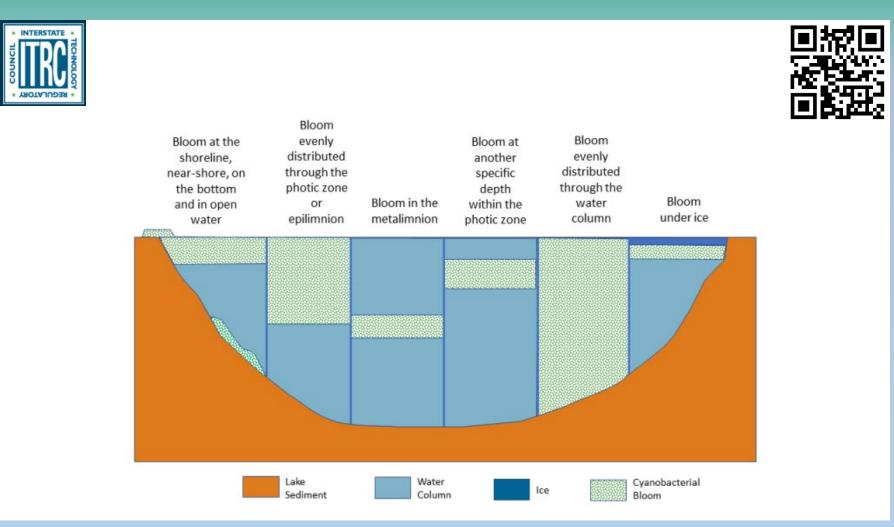
General objective	Site location	Sample frequency	Sample type
Recreational areas	Beaches	Routine basis during periods of	Surface sample
	Open water areas used for full- body contact recreation peak recreational use • Daily	Integrated photic zone	
	Bay or cove areas used for full- body contact recreation	• Weekly	
	Public access sites		
Drinking-water supplies	Location relevant to the drinking-	Routine basis	Discrete depth
	water intake(s)	 Daily Weekly During periods when events have historically occurred 	Integrated photic zone
	A. 7.		Integrated epilimnion
	Notice An algae bloom has made this area potentially		Integrated water column
	unsafe for water contact. Avoid direct contact with	During events	
USGS	visible surface scum.		Graham and others, 2

science for a changing world

When to Sample?

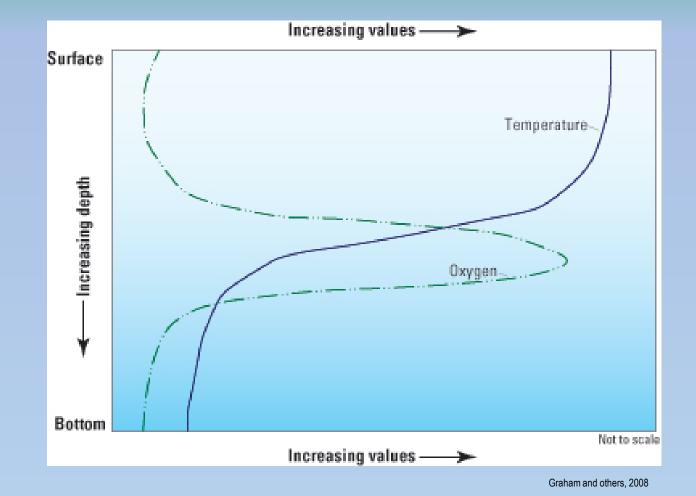
Recreational Areas

- Seasonal
- Routine or Tiered Approach
- Daily or Weekly
- Event Based
- Drinking-Water Supplies
 - Routine or Tiered Approach
 - Daily or Weekly
 - Event Based
- Other Types of Sampling
 - Variable
 - Objective Driven

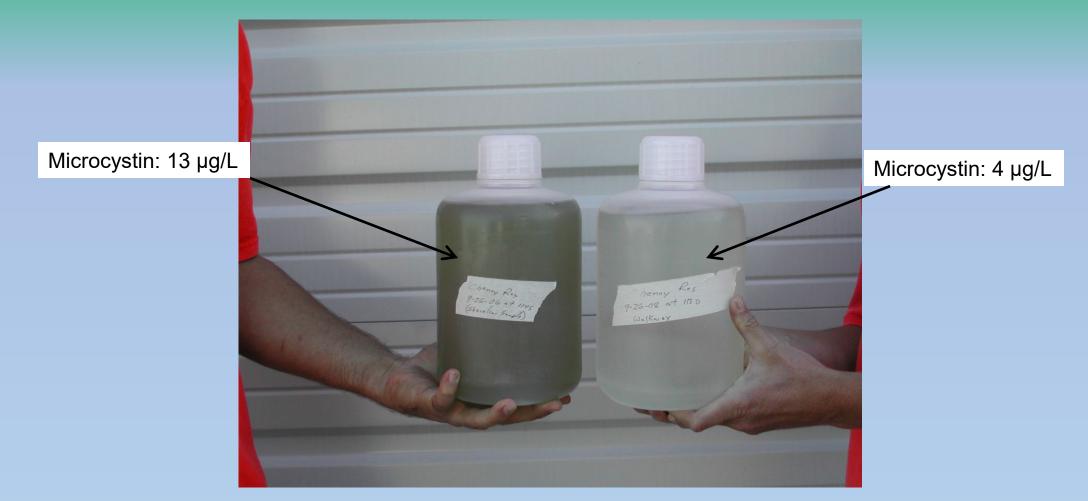

Do not try this at home (or anywhere else)!

Grand Lake St. Marys, Ohio Source of Photos Unknown

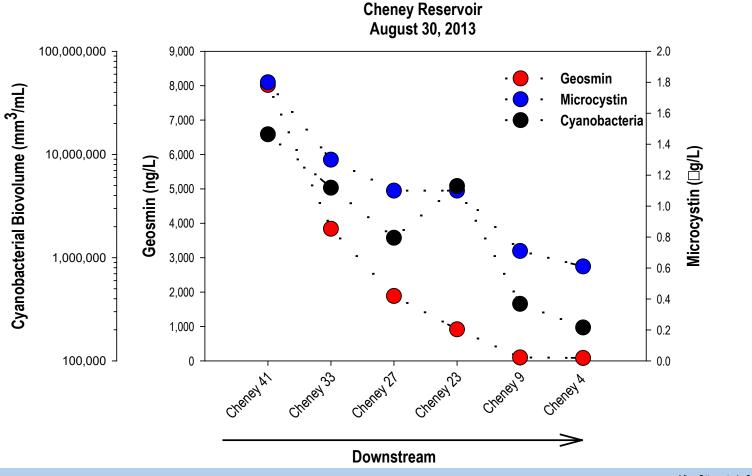
Where to Sample?



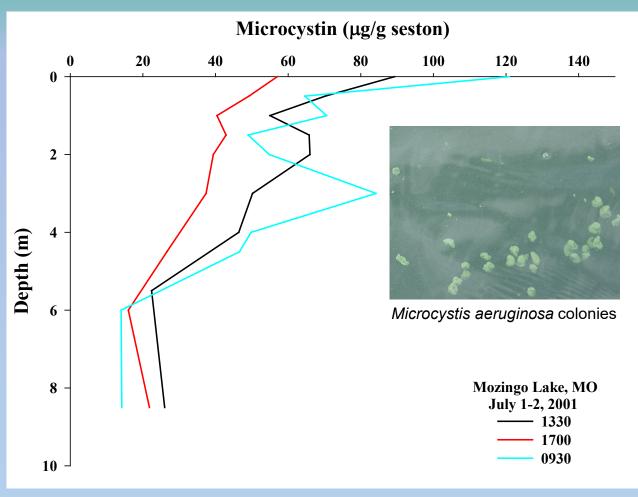
Modified from Graham and others, 2008 by ITRC


Determining the Location of Cyanobacteria in the Water Column

- Visual assessment
- Vertical profiles
 - Photic depth
 - Stratification
 - Mixed depth
 - Photosynthetic activity
- Signs of photosynthetic activity include
 - Sharp increases in pH and dissolved oxygen
 - Increased fluorescence


Concentrations of Cyanobacteria or Cyanotoxins May Vary Substantially at Different Sample Locations Within a Lake

Samples collected about 50 m apart


Concentrations of Cyanobacteria or Cyanotoxins May Vary Substantially at Different Sample Locations Within a Lake

After Otten et al., 2016

Concentrations of Cyanobacteria or Cyanotoxins May Vary Considerably at a Single Site Depending on When and Where Samples Are Collected

	Sample Type and				
	Mic	rocystin Conce	ntration (µg/g	seston)	
Time	Surface	Integrated Photic Zone	Integrated Epilimnion	Integrated Water Column	
0930	121	68	71	57	
1330	89	58	66	55	
1700	57	39	42	37	

After Graham and others, 2006

How to Sample?

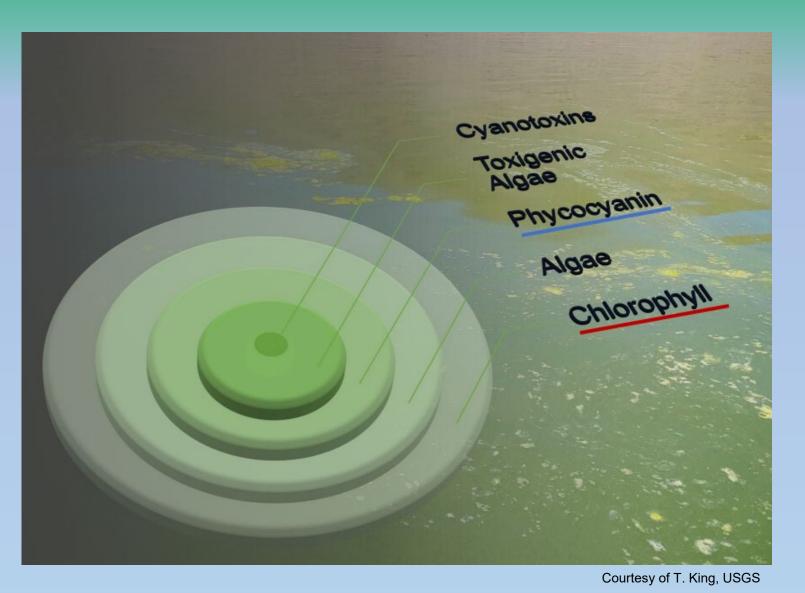
- Visual surveys
- Surface samples
- Discrete-depth samples
 - Location of the cyanobacterial community is known
 - Structure of interest at depth
 - Vertical water column distribution of interest
- Depth-integrated samples
 - Integrated photic zone
 - Integrated epilimnion
 - Integrated water column

How to Sample?

- Benthic samples
 - Visual surveys
 - Rock scrapes
 - Artificial substrates
- Patchiness is a challenge for representative sample collection
- Quantitative sampling is a challenge

Considerations When Choosing Where and How to Sample

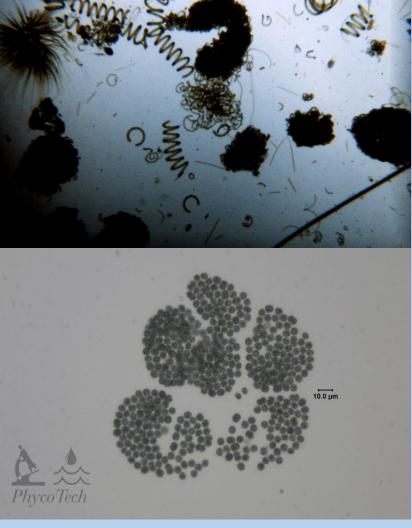
- Specific study objectives
- Stratification
- Spatial and/or water-column distribution of cyanobacteria
- Flexibility of sampling plans
 - Where and how to collect samples may be decided in the field
- Quality assurance and control
 - Spatial variability may influence field replicates
 - Cyanobacteria may influence split replicates

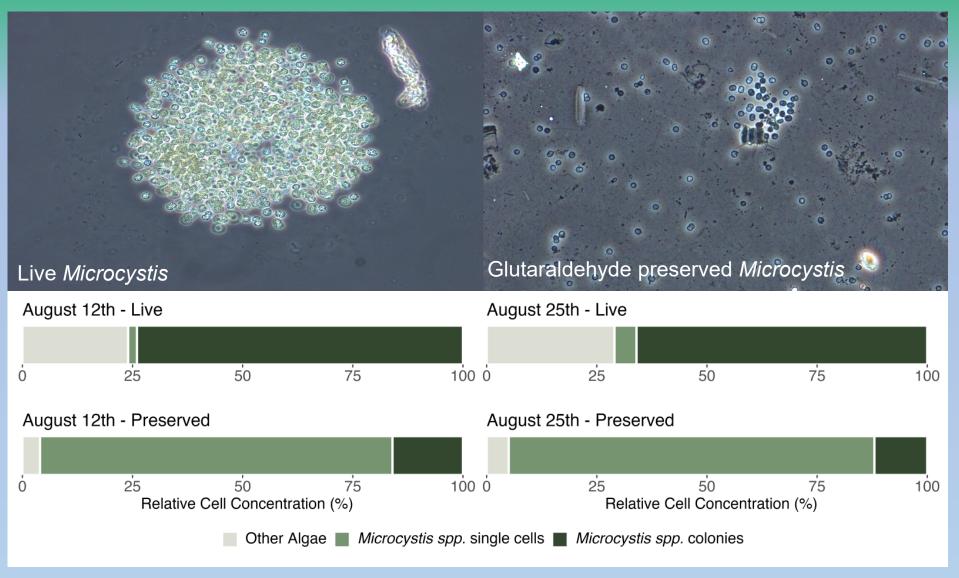


What to Sample?

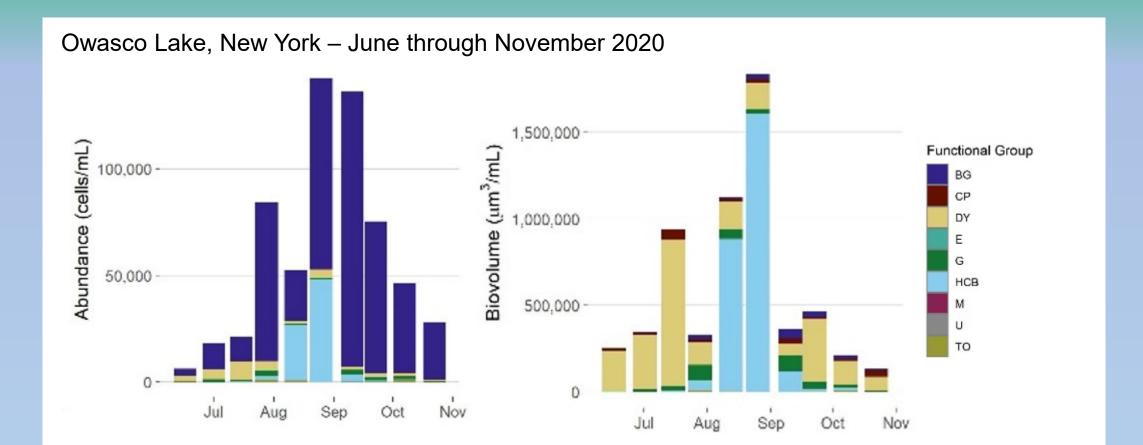
- Direct measures
 - Cyanobacteria
 - Cyanotoxins

Indirect measures


- Cameras
- Pigments
- Genetics


Cyanobacteria Sampling

- Live or preserved
 - Formaldehyde: hazardous fumes, distorts cells, bleaches color
 - *Lugol's lodine*: stains starch, may cause loss of flagella and cell distortion, loses preservative power over time
 - *Glutaraldehyde*: hazardous fumes, retains color and fluorescence, limited cell distortion
- Qualitative or quantitative
- Unit of measure
 - Natural units: NU/mL
 - Abundance: Cells/mL
 - Biovolume: µm3/mL

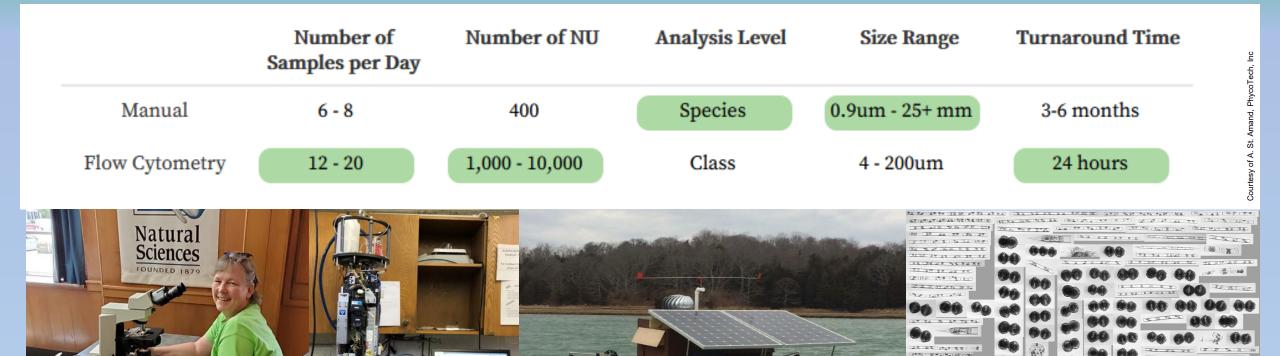

Preservation Effects

After Gifford et al., in review

Cyanobacterial Abundance and Biovolume

After Gifford et al., in review

Traditional Microscopy and Flow Cytometry



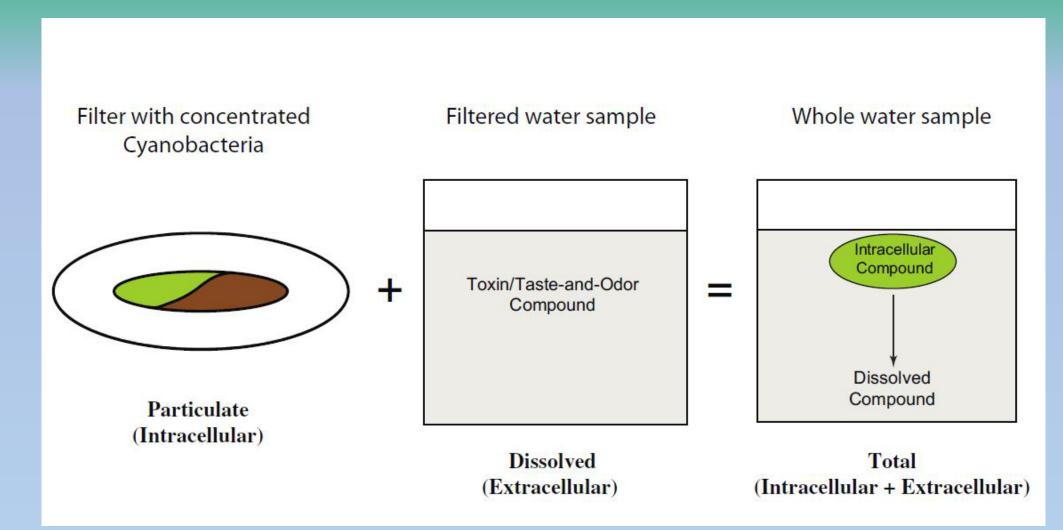


Photo Credit: A. St. Amand, PhycoTech, Inc

Photo Credit: M. Broshnahan, WHOI

Photo Credit: Woods Hole Oceanographic Institute (WHOI)

Cyanotoxin Sampling

Sample Bottles, Preservatives, and Hold Times are Cyanotoxin and Analysis Specific

🔅 eurofins 🛛

Abraxis

Cyanotoxins in Water Sample Collection Quick Reference Guide for ELISA Plate Assays

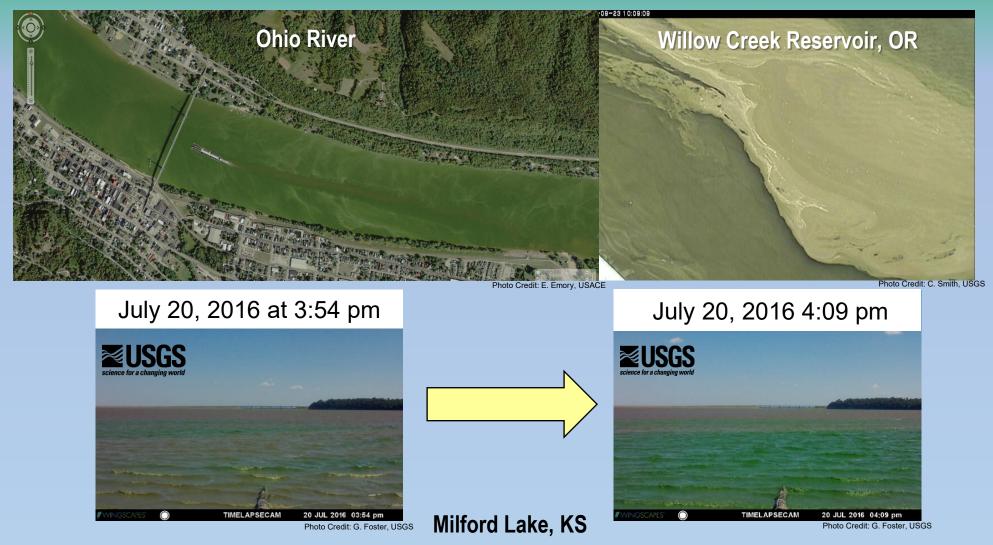
Analyte	Collection/Storage Container Use with PTFE lined screw caps	Sample Preservation**	Storage & Handling
Anabaenopeptins	Glass – clear or amber Polyethylene terephthalate glycol (PETG)	Treated water: Immediately upon collection, quench chlorine with ascorbic acid or sodium thiosulfate* (up to 1 mg/mL; recommended concentration 0.1 mg/mL)	Analyze immediately, refrigerate (4 °C) for up to 5 days, or freeze (-20 °C) Ship overnight on ice
Anatoxin-a	 Glass – amber only, do <u>NOT</u> use clear glass Anatoxin-a is light sensitive – avoid exposure to light, as this will degrade the toxin and produce inaccurate results 	Treated water: <u>Immediately upon collection</u> , quench chlorine with ascorbic acid* (up to 1 mg/mL; recommended concentration 0.1 mg/mL). Do <u>NOT</u> use sodium thiosulfate, as it will degrade the toxin and produce inaccurate results Freshwater (treated & raw): <u>Immediately upon collection</u> , preserve the sample by diluting 9 parts sample to 1 part 10x concentrated sample diluent & adjust pH to between 5-7 using 1N NaOH or HCl‡ Marine water: Adjust pH to between 5-7 using 1N NaOH or HCl‡ ‡Avoid exposure to high pH conditions, as this will degrade the toxin and produce inaccurate results	Analyze immediately, refrigerate (4 °C) for up to 28 days, or freeze (-20 °C) if greater than 28 days Ship overnight on ice
BMAA	Glass – clear only, do <u>NOT</u> use amber glass Toxin will adsorb to amber glass, producing inaccurate results Polyethylene terephthalate glycol (PETG) High density polyethylene (HDPE) Polycarbonate (PC) Polypropylene (PP) Polystyrene (PS)	All samples: Analyze samples immediately upon collection or freeze (-20 °C) to avoid degradation of the toxin, which will produce inaccurate results	Analyze or freeze (-20 °C) immediately upon collection Ship overnight on ice
Cylindrospermopsin	Glass – clear or amber Polyethylene terephthalate glycol (PETG) High density polyethylene (HDPE) Polycarbonate (PC) Polypropylene (PP) Polystyrene (PS)	Treated water: Immediately upon collection, quench chlorine with ascorbic acid or sodium thiosulfate* (up to 1 mg/mL; recommended concentration 0.1 mg/mL)	Analyze immediately, refrigerate (4 °C) for up to 5 days, or freeze (-20 °C) Ship overnight on ice
Microcystins/ Nodularins	 Glass – clear or amber Polyethylene terephthalate glycol (PETG) Avoid plastic containers other than PETG, as toxin will adsorb to container surfaces, producing inaccurate results 	Treated water: <u>Immediately upon collection</u> , quench chlorine with sodium thiosulfate* (up to 1 mg/mL; recommended concentration 0.1 mg/mL). Do <u>NOT</u> use ascorbic acid, as this may degrade the toxin and produce inaccurate results	Analyze immediately, refrigerate (4 °C) for up to 5 days, or freeze (-20 °C) Ship overnight on ice
Saxitoxins	 Glass – clear or amber Polyethylene terephthalate glycol (PETG) High density polyethylene (HDPE) Polycarbonate (PC) Polypropylene (PP) Polystyrene (PS) 	Treated water: Immediately upon collection, quench chlorine with ascorbic acid or sodium thiosulfate* (up to 1 mg/mL; recommended concentration 0.1 mg/mL) Freshwater (treated & raw): Immediately upon collection, preserve the sample by diluting 9 parts sample to 1 part 10x concentrated sample diluent Marine water: None required	Analyze immediately, refrigerate (4 °C) for up to 5 days, or freeze (-20 °C) Ship overnight on ice

*The use of solid quenching reagents is recommended. Note: EPA Method 546 prohibits the use of liquid reagent solutions for sample quenching.

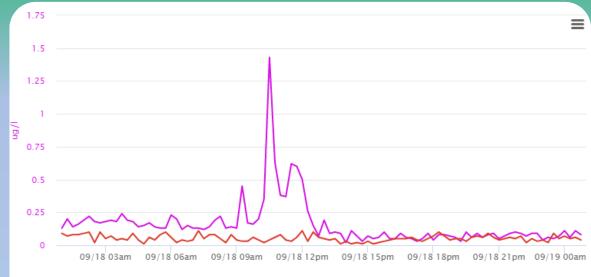
**Additional sample preparation such as cell lysis and filtration may be required prior to analysis depending on analytical objectives (e.g. "total" versus "free" toxin). Refer to specific kit user's guide for additional information. DISCLAIMER: Current recommendations by applicable regulatory agencies should always take precedence and should be followed in the event of a conflict.

Cyanobacteria Colonies or Filaments Large Enough to Be Retained on a Net Can Be A Useful Indicator But is a Semiquantitative Approach

science for a changing world


Solid Phase Adsorption Toxin Tracking (SPATT)

- Time-integrating (hours to weeks) passive sampler
- Microbead resins adsorb dissolved toxins (HP20 "Diaion" is common)
- Toxins extracted off resins
- Semiquantitative
- Complimentary, not
 interchangeable approach



Cameras Show Potential as Visual Monitoring Tools

Cameras May Provide Additional Lines of Evidence When Interpreting Sensor-Based Data

◆ SKANEATELES LAKE AT SKANEATELES NY | Phycocyanins (cyanobacteria), water, in situ, fluorometric method, excita8€;
 ◆ SKANEATELES LAKE USGS BUOY | Phycocyanins (cyanobacteria), water, in situ, fluorometric method, excitation at 58€;

https://ny.water.usgs.gov/maps/habs/

Courtesy of G. Foster, USGS

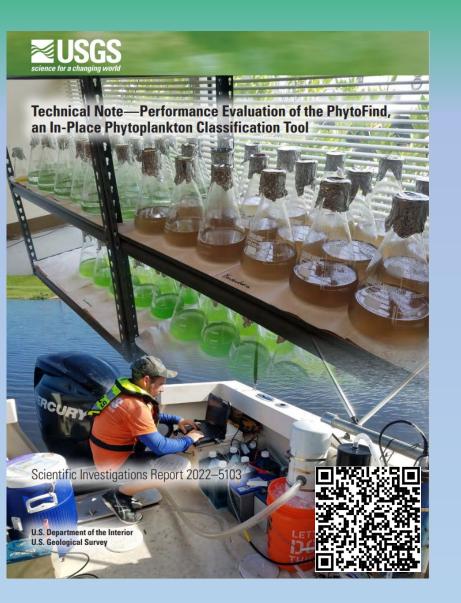
09-18-2018 Tue 08:00:02 USGS 04236000 Skaneateles

> 0633/0000 - Sincentaine beirs The, 207 Verselag, Reptember 16, 2018 (2010) 642

Pigment Sampling

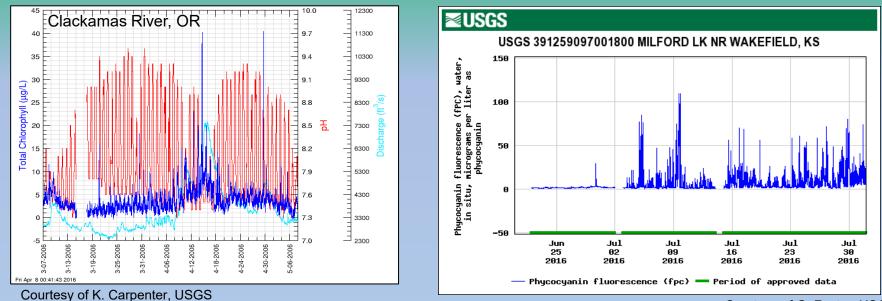
- Chlorophyll
- Phycocyanin
- In Situ sensors
 - Single channel
 - Dual channel
 - Multi channel
- Remote sensing

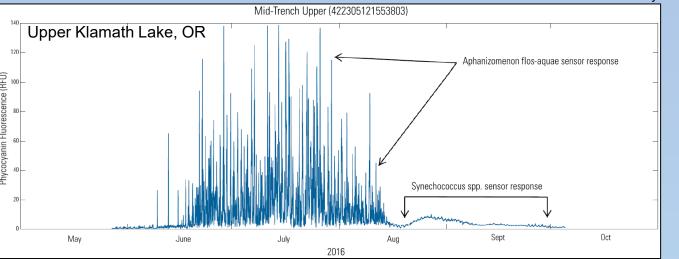
In Situ Pigment Sensors Have a Wide Range of Applications


Field Techniques for the Determination of Algal Pigment Fluorescence in Environmental Waters—Principles and Guidelines for Instrument and Sensor Selection, Operation, Quality Assurance, and Data Reporting

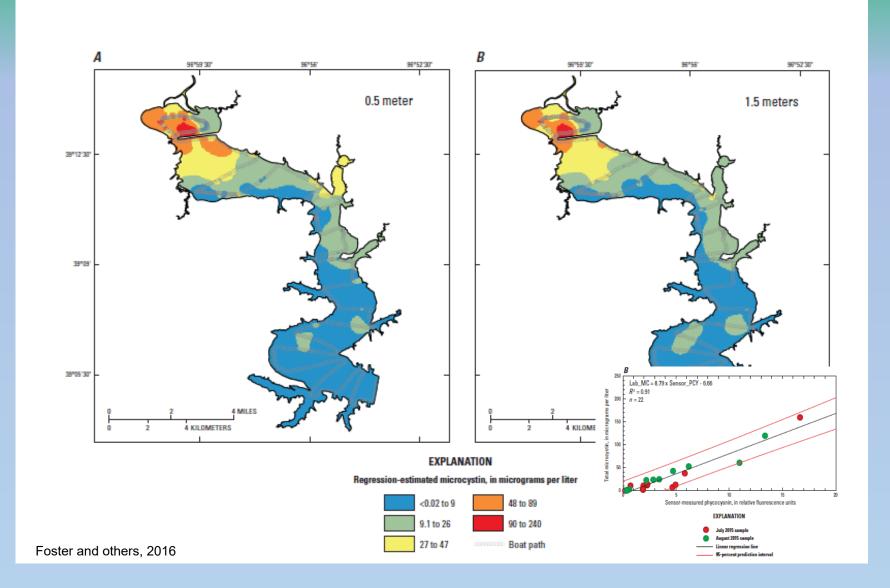
Chapter 10 of Section D, Water Quality Book 1, Collection of Water Data by Direct Measurement

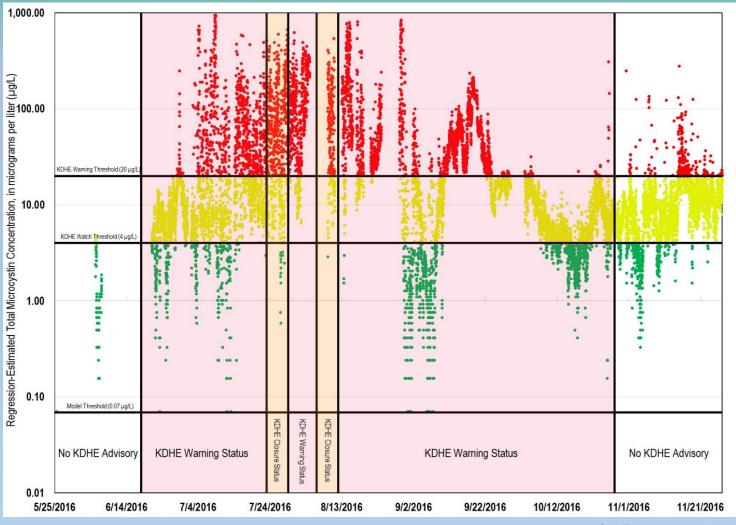
Techniques and Methods 1–D10


U.S. Department of the Interior U.S. Geological Survey



Diurnal or Noisy Patterns in Algal Fluorescence May Be Indicative of Potentially Harmful Algal Blooms


Courtesy of G. Foster, USGS

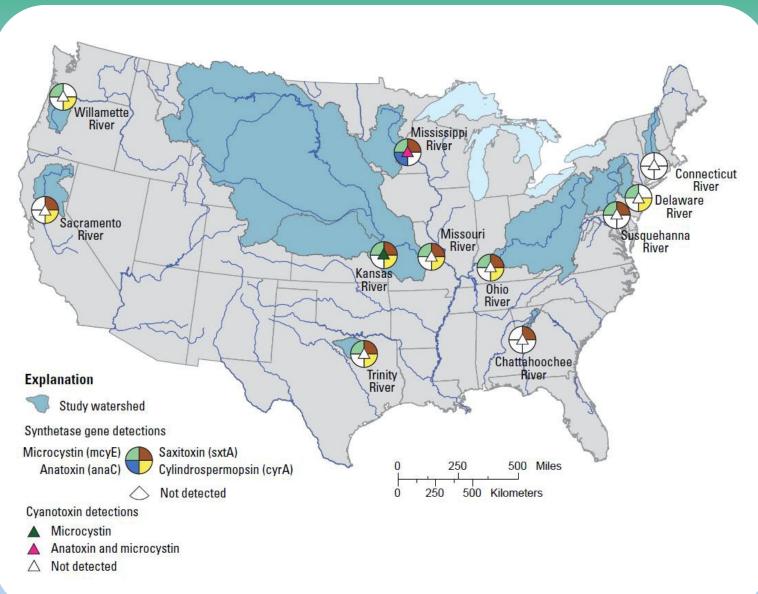

Courtesy of O. Stoken, USGS

Pigment Sensor Data Can Be Used to Develop Models to Estimate Cyanobacteria and Cyanotoxin Concentrations

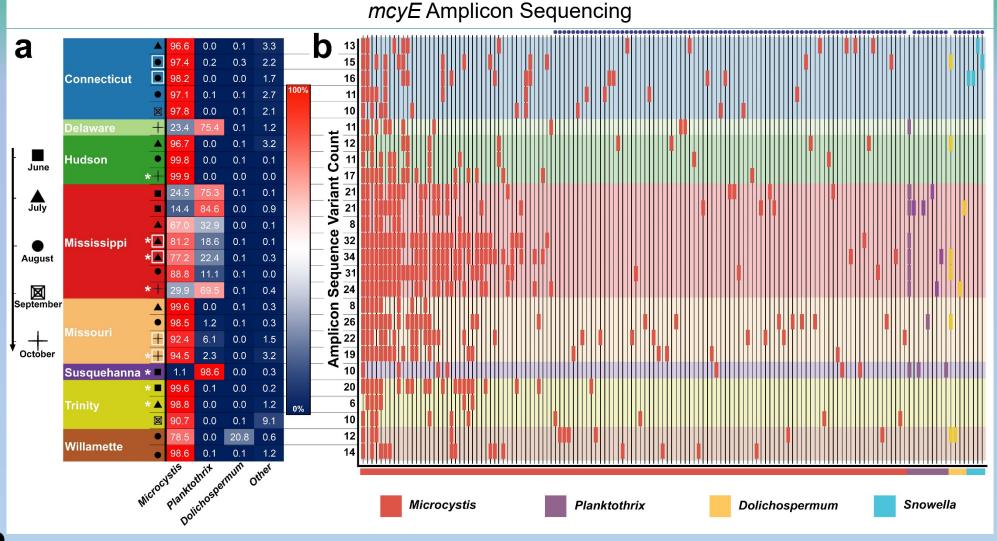
Pigment Sensor Data Can Be Used to Develop Models to Estimate Cyanobacteria and Cyanotoxin Concentrations

After Foster et al., 2018

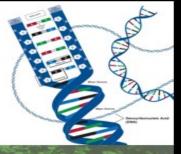
Genetic Sampling


qPCR and qRT-PCR

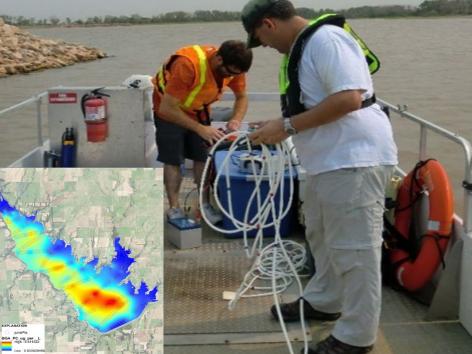
- Targeted
- Presence and abundance
- Omics
 - Structure, function, and dynamics



Cyanotoxin Synthetase Genes Occurred More Frequently Than Cyanotoxins in Large Rivers



Advances in Genetic Approaches Allow Assessment of Occurrence in Novel Ways



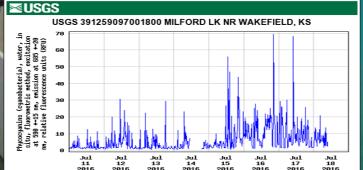

New and Emerging Tech Ground to Space Assess

Photo Credit: A. Horner, USGS

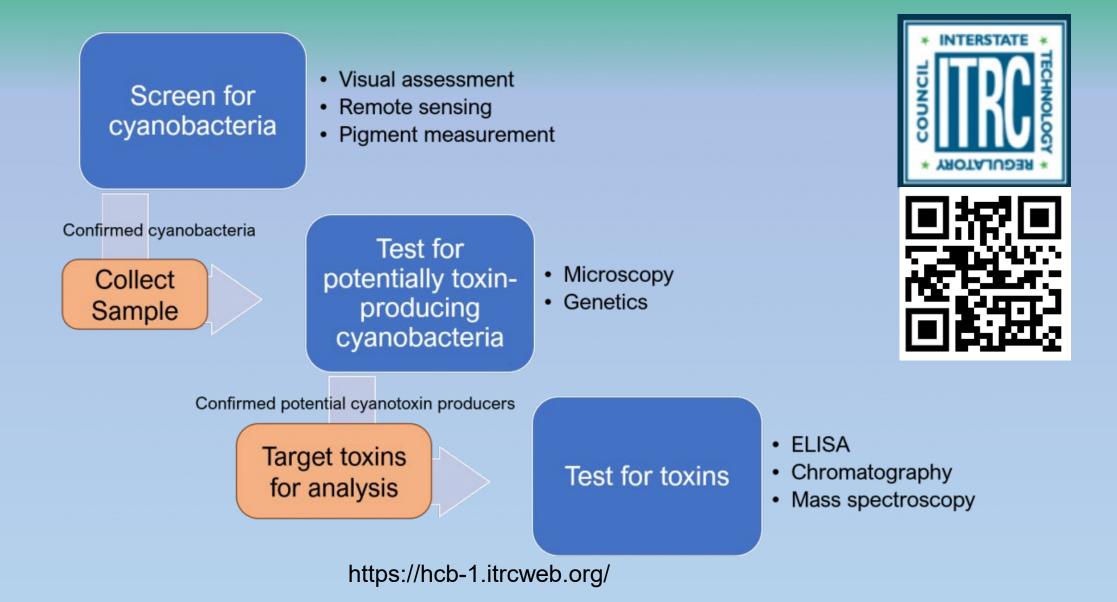


Photo Credit: USGS

Tiered Sampling Approaches Can Be Cost Effective

Resources: ITRC Guidance

Framework of HCB Guidance Documents

HCB-1

Primarily planktonic, introduces benthic HCB

- Introduction
- Monitoring
- Communication and Response Planning
- Nutrient Management
- Recommendations Available at https://hcb-1.itrcweb.org

SHARED/ UPDATED RESOURCES

- Cyanotoxins
- Management Strategies
- Management Strategy
 Selection Tool
- Monitoring Method
 Selection Tool
- Learning to Recognize
 HCBs Video
 - Visual Guide

HCB-2

Focuses on unique aspects of benthic HCB

- Introduction
- Monitoring
- Communication and Response Planning
- Recommendations
- Case Studies
 Available at
 https://hcb-2.itrcweb.org

INTERSTATE

THOTALUDE

https://hcb-1.itrcweb.org/

Resources: ITRC Guidance

Level of Training

Novice

Relative

Cost

\$

Select your monitoring requirements:

Target Analyte		Lab Requ	Lab Required		Turnaround Time	
✓	Planktonic Cyanobacteria		Yes		Less than 24 hours	
	Benthic Cyanobacteria		No	 Image: A start of the start of	1 to 3 days	
~	Cyanotoxin					

https://hcb-2.itrcweb.org/monitoring-tool/

Cyanotoxin

CGN TOT

P/A

Result Type

Qualitative

Sample Type

Variable

Cyanobacteria

DEN/AB

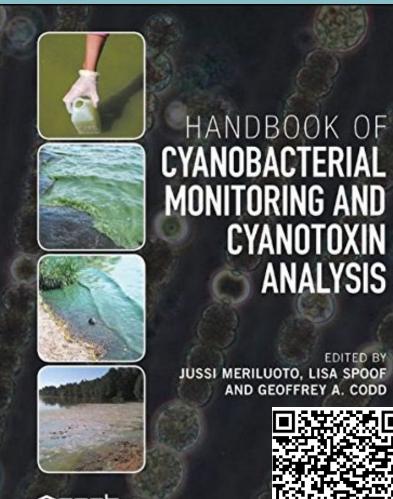
P/A ID

od

nktonic

Resources: World Health Organization and European Cooperation in Science and Technology Guidance

Toxic Cyanobacteria in Water


A Guide to Their Public Health Consequences, Monitoring and Management

edited by **Ingrid Chorus** Martin Welker

World Health

EDITED BY

Resources: USEPA Guidance

Cyanobacterial Harmful Algal Blooms (CyanoHABs) in Water Bodies

https://www.epa.gov/cyanohabs

Monitoring and Analysis

- <u>Determination of Cyanotoxins in Drinking and Ambient</u>
 <u>Freshwaters</u>
- Laboratories that Analyze for Cyanobacteria and Cyanotoxins
- <u>State HABs Monitoring Programs</u>

Resources: USGS Field and Laboratory Guidance

CYB-1

Dage

CYANOBACTERIA IN LAKES AND 7.5 **RESERVOIRS: TOXIN AND TASTE-AND-ODOR SAMPLING GUIDELINES**

By Jennifer L. Graham, Keith A. Loftin, Andrew C. Ziegler, and Michael T. Meyer

Tage
7.5 Cyanobacteria in lakes and reservoirs: Toxin and taste-and-odor sampling guidelinesCYB-5
7.5.1 Light intensity and thermal stratification in lakes and reservoirs
7.5.2 Cyanobacteria, toxins, and taste-and-odor compounds
7.5.2.A Cyanobacterial abundance, occurrence, and distribution10
7.5.2.B Toxins
7.5.2.C Taste-and-odor compounds14
7.5.3 Temporal and spatial variability of cyanobacteria15
7.5.3.A Temporal variability
7.5.3.B Spatial variability
7.5.4 Study objectives and designs
7.5.5 Sample collection
7.5.5.A Single-grab and composite samples
Grab samples29
Composite samples
7.5.5.B Surface samples
7.5.5.C Discrete-depth samples
7.5.5.D Depth-integrated samples
Continuous depth-integrated samples
Discontinuous depth-integrated samples34
7.5.5.E Quality control
7.5.5.F Ancillary data
7.5.6 Sample holding time, processing, and shipping
7.5.6.A Sample holding time
Chapter A7, Biological Indicators Cyanobacteria, Version 1.0 (9/2008)

JSGS **×**1

Field and Laboratory Guide to Freshwater Cyanobacteri Harmful Algal Blooms for Native American and Alaska **Native Communities**

U.S. Department of the Interior U.S. Geological Survey

science for a changing world

Jennifer Graham jlgraham@usgs.gov

